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Capitulo 1

Fundamentos

Las siguientes son notas de clase del curso de Probabilidad del Act. Servando Valdés Cruz de la
Facultad de Ciencias de la UNAM. Estas notas fueron originalmente escritas por Magali Diaz.

1.1. Espacio de Probabilidad

Definicion 1.1. Un espacio de probabilidad es la terna (2, 7, P) donde Q # & es el espacio
muestral, F es una o-algebra de subconjuntos de €2, y P es una medida de probabilidad.

Definicién 1.2. Se dice que F es una o-algebra de subconjuntos de Q) # & <

(F1) e F Universalidad
(F2) Ace F= A°eF Cerrado Bajo Complementos
(F3) Ape FYneN=,n4n €F Cerrado Bajo Uniones

Teorema 1.1 (Propiedades de o-algebra). Sea F una o-algebra de subconjuntos de 2 # & =

(F1) A1,.., Ay e F=U_,Aie FVneN Cerrada Bajo Uniones Finitas
(F2) @€ F Conjunto Vacio
(F3) Ape F¥YneN=,nyAn €F Cerrada Bajo Intersecciones Numerables
(Fo) A1, , Ay e F=>Ni,Aie FVneN Cerrada Bajo Intersecciones Finitas
(F5) A1, As € F = Ay \ Ay € F. Diferencia de Conjuntos

Proof. Probemos el Teorema 1.1

(F1) Sea Ay, ..., A, € F. Definimos una sucesion:
Bk _ {Ak S? k <n
g sik>n

k=1 =1
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Como cada By € F por (F2)
=|JAierF
i=1
esto por cerradura bajo uniones numerables.
(F2) Como Q € Fy F es cerrada bajo complementos = Q¢ = g € F.
(F3) Sean {Ap}nen CF =Vn= A% € F, y por (F1) =

JAaser= (UA;)CZ () An€F.

neN neN neN

(F4) Sean A,,...,A, € F,ypor (F1) =

m(u)f

i=1

(F5) Sean A;, Ay € F. Entonces A§ € F y, como F es cerrada bajo intersecciones finitas:

A1\ Ay = A1 NAS e F.
-. Teorema 1.1 es cierto. O

Definicién 1.3 (Evento). Se dice que A es un evento < A € F C Q

Definicién 1.4 (Medida de Probabilidad). Se dice que P es una medida de probabilidad <
(F1) P(Q2)=1
(P) VAeF=P>0

(P3) Si{Ai}* e FlAiNA; =@ Vj#i= P2, A) =372, P(A)

Teorema 1.2. Sea P una medida de probabilidad =

(P1) P(@) =

(Py) Sean Ay, ..., A, eventos ajenos = P(U_, A;)) = 2", P(A;).

(P3) VA€ F = P(A) =1— P(A°).

(Py) Sean A, BE FCQy Ac B= P(B\ A) =P(B)— P(A) y P(A) C P(B).
(P5) Sean A,B € F C Q= P(AUB) = P(A) + P(B) — P(AN B).

(Ps) Sean A,B,C € FC Q=

(AUBUC’) P(A)+P(B)+P(C)—P(ANB)—P(ANC)—P(BNC)+P(ANBNC)
(P7) Se cumple la formula de inclusion y exclusion.

(Pg) Sean A, B dos eventos cualesquiera = P(A) = P(AN B) + P(AN B°).

(Py) Se cumple la desigualdad de Boole.
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Proof. Probemos el Teorema 1.2
(Py) Notemos que podemos expresar
g=0UQgUQ@U...UZ yademas NI =9

Por la Definicion 1.4

P@u..U@)= iP(@) < P(@) = iP(@)

Ya que
P(A)>0VAeF yademas @€ F=P(@)=0

(P2) Ui 4 =2, Ai, Ay = @ Notemos que Vm >n+1=

P (fj Ai) S P =Y P(A)+ 3 P(4) -

=1 = =1 j=n+1

(P3) Note usted que Q@ = A+ A° =

P(Q2)=P(A)+ P(A°) = P(AUA®) = P(A)+ P(A°)=1= P(A)=1—- P(A°)

(Py) Es facil ver que B=AU(B\ A) yque AN(B\A) =0
Se sigue por la Definicién 1.4 que
= P(B)=P(AUB\ A)=P(A)+ P(B\ A) = P(B\ A) = P(B) — P(A)
Ahora, como P(B\ A) = P(B) — P(A) y B\ A € F, usando la Definicion 1.4

= P(B\ A) > 0= P(B) = P(A) + P(B\ A)

(Ps) Notemos que AUB=AUB\Ayque AN(B\A)=9
= P(AUB)=P(A)+ P(B\ 4)
Note usted que B\A=B\ANByque (ANB)<1=

P(B\ A) = P(B) — P(AN B) = P(AUB) = P(A) + P(B) — P(AN B)

(Ps) Por (Ps) sabemos lo siguiente
P(AUBUC)=P((AUuB)UC)=P(AUB)+ P(C)-P(AUB)NC) =
Se sigue que

P(A)+ P(B) - P(A (C)—P((AUB)NC) =
P(A)+ P(B)— P(A (C)—P(AnC)Uu(BNnQO)) =
P(A)+ P(B)+P(C)—P(ANB)—-PANC)—P(BNC)+P(ANBNC(C)
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(P7) Sean {A;}! , € F cualesquiera n eventos =

P(AU...UA) =P || )4 ] =

ICs

n

D P(A) =) PAiNA)+ Y PANANA)+..+(-1)"'P ﬁAi
i=1

i=1 1<j i<j<k

(Pg) Noteque A=ANQ=AN(BUB%) =(ANB)U(ANB°),y por (Ps) s.t.q.

P(A)=P(ANB)+ P(AN B°)

(Py) Para n =1 tenemos que P(A;) < P(A;).
Se sigue que P(|Ji-; 4;) <Y1, P(A;).
Por (P5) tenemos que

n+1 n
PlU4 | =PlU4|+PA)-P|JAiNAn
=1

i=1 =1

C=

Como P(J;_; AiNApt1) 20=

n+1 n n+1
P UAi <P UAi +P(An+1):ZP(Ai)
i=1 i=1 i=1
.. el Teorema 1.2 es cierto. O

Notacion (Funcion). Una funcién f es una regla que asigna a cada elemento € A un tnico
elemento f(z) € B, lo que denotamos:

f:A—= B, zw— f(z)

En este caso, A es el dominio, B el codominio, y f(z) la imagen de = bajo f.
Observacion. P es una funcién conjuntista.

Definicién 1.5 (Monotonia). Sea {A,},>1 C F.

Decimos que es monotona creciente si A1 C A; C -+, en cuyo caso

lim A, = G A,.
n=1

n—oo

Decimos que es monotona decreciente si A; D A; O -+, en cuyo caso
o0
lim A, = () An.
n—oo
n=1

Teorema 1.3 (Teorema de Continuidad). Sea {A,},>1 una sucesién monoétona de eventos
de un espacio de probabilidad (Q, F, P) = P(A) = P(lim, 00 4,) = lim,, 00 P(Ay)
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Proof. Caso 1:

{A,} es una sucesion creciente, es decir, A1 C Ay C ---. Definimos:

A= nl;r{:o A, = @1 A,.

Sea By := A; y para n > 2, definimos B,, := A, \ A,_1. Entonces los B,, son eventos
disjuntos dos a dos, y se cumple que:

o0 o0

UAnzl_an,

n=1 n=1
donde | | denota union disjunta.

Por la o-aditividad de la medida de probabilidad:

P GAn :iP(Bn).
n=1 n=1

Ademés, como A, = J;_, B, se tiene que:
P(An) =) P(By),
k=1
y por lo tanto:

lim P(A,) =Y P(By) = P(A).

n— 00
k=1

Caso 2:
{A,,} es una sucesion decreciente, es decir, A1 2 As O ---. Definimos:

oo

A= lim A, = ﬂ A,.

n=1
Sea C,, := A; \ A,, que define una sucesion creciente de eventos (ya que A, D A,41 =
Cn g Cn+1)a y:

Il
_
3
Il
_

n

Por el caso creciente, sabemos que:

lim P(C,) = P(A;) — P(A).

n— oo
Por lo tanto:
P(A) = P(4;) — lim P(C,) = lim P(A,).

n—oo n—oo

En ambos casos se cumple que:

P ( 1fm An> = lfim P(A,).

n—oo n— oo

.. el Teorema 1.3 es cierto. O
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1.2. AndAlisis Combinatronico

Definicion 1.6 (Principio fundamental del conteo). Si hay n caminos para llegar de A a B y
m caminos para llegar de B a C = hay m X n caminos para llegar de A a C.

Definicion 1.7 (Ordenacién sin repeticion). Se desea ordenar sin repeticion k elementos to-
mados de una poblacién n. Donde 0 < k < n < oo y n,k € ZT = en total hay

nn—1Mn-1)..(n—k+1)= m

Definicion 1.8 (Ordenacién con repeticion). Se desea ordenar con repeticién k elementos
tomados de una poblacién n. Donde 0 < k <n < oo An,k € ZT = en total hay

Definicion 1.9. Sea n € Z™T, y sean ny,na,...,nx € ZT, tales que E?Zl n; = n, entonces
definimos la coeficiente multinomial como

< n > n!
Ny, N2, ..., Nk nl'ng'nk'

Definicién 1.10. Supongamos que se tiene una poblacién con n elementos y tomamos de
ella una muestra de k elementos sin reemplazo (es decir, sin repeticion), entonces el ntiimero
de combinaciones a través de la cual podemos extraer dicha muestra es igual a

«= i = (1)

Teorema 1.4 (ldentidad de Vandermonde). Sean m,n,r € Ny. Entonces

i m n _(m+n
kEJ\r—k) r
k=0
Proof. Consideramos un conjunto de m + n elementos, donde m son de tipo A y n son de

tipo B. Queremos contar de cuéntas maneras podemos escoger r elementos en total.

Por un lado, directamente:

m-+n
Total de maneras de escoger r elementos = ( * >
r

Se puede hacer por casos segin cuantos de los r elementos provienen del grupo A: si
tomamos k elementos de A = tomamos r — k de B. Esto se puede hacer de:

(1))

maneras, y sumando sobre todos los posibles k:

> (02

.. Teorema 1.4 es cierto. O
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1.3. Probabilidad Condicional
Notacion. La probabilidad condicional de A dado B es denotada como P(A|B)
Definicion 1.11 (Ley General de la Probabilidad Condicional). Sea (92, F, P) un espacio de

probabilidad y sean A, B € F, donde P(B) > 0 = P(A|B) se define como

P(AN B)

P(AIB) = —5 5

Definicion 1.12 (Ley General de la Independencia). Se dice que dos eventos A, B € F son
independientes si se cumple alguna de las siguientes identidades

(I1) P(A|B) = P(A)
(I2) P(B|A) = P(B)

(I;) P(AN B) = P(A)P(B)

La probabilidad de interseccion de dos eventos dependientes A, B € F es
P(ANB)=P(A)P(B|A) = P(B)P(A|B)
Para eventos independientes tenemos que P(AN B) = P(A)P(B).

Se sigue directamente de la Definicién 1.11 y 1.12. O

Teorema 1.5 (Teorema de Bayes). Sean A, B € F con P(B) # 0. Entonces:

P(B | A)P(A)

P(4|B)= =55

Proof. Por definicién de probabilidad condicional:

(AN B)

P(A|B)=PP(B) (BNA) P(ANB)

P
PEIA =5 = r@)

Sustituimos el Corolario anterior en la primera ecuacion

= P(A|B) = P(B}L(/gf(“‘)

. Teorema 1.5 es cierto. ]

Teorema 1.6. Sean {By, ..., B, } particiones de Q disjuntas tales que By U...U B,, = ) para
alginn e Ny P(B;) >0Vi=1,..,n= VA FC Q=

P(A) =} P(A|B)P(B)

Proof.

P(A) = i P(A| B)P(B;) = P(ANBy) + ...+ P(AN B,)

=1

= P((ANBy)U...U(ANB,)) = P(AN(B1U...UB,)) = P(ANQ) = P(4)
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Teorema 1.7 (Teorema General de Bayes). Sean {Bj, ..., By, } particiones de 2 disjuntas tales
que B1U,..,UB, = Qparaalginn e Ny P(B;) >0Vi=1,...n=> VA FC Q=

P(A| Bj)P(By)

2, P(A| Bi)P(B:)

P(B; | A) =

Un evento Bj; se llama hipétesis, P(B;) se llama probabilidad a priori, y P(B;|A) es una
probabilidad a posteriori.

Proof. Por el Teorema 1.6 sabemos que

_ P(AnB;) P(A|B;)P(B;)  P(A|B;)P(B;)
PBI)==3@ ~ P~ T, P(AB)P(B)

O

Observacion. El Teorema 1.5 aplica a dos eventos arbitrarios. El Teorema 1.7 requiere una
particion de €. El primero es un caso particular del segundo.

Teorema 1.8. Sean Ay, As, ..., A, € F tal que P (n;;—f Ai) >0=

n n 1—1
P ﬂAi :HP Ai|ﬂAj
i=1 i=1 j=1

Proof. Procederemos por induccion matemaéatica sobre n.
(Base inductiva). Tenemos que:
P(A1NAy) = P(A;) - P(As | Ay)

que es la definiciéon de probabilidad condicional, siempre que P(A;) > 0. Asi, el resultado
se cumple para n = 2.

(Paso inductivo). Supongamos que para cierto k > 2, se cumple:

k
P4 =
=1 [

Queremos probar que entonces también se cumple para k + 1, es decir:

k i—1
PlAi|)4
=1 j=1

k+1 k+1

i—1
P4 =]IP[4] A4
i=1 i=1 j=1

Notamos que:
k41

k
Pl A =P |4 | A
i=1 i=1
Usando la definicién de probabilidad condicional:

k+1 k
PNA|=P|NA]| P|A|[)A
=1 =1 ]
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Aplicando la hipotesis inductiva al primer término:

i—1
ﬂ Aj P Apqt
j=1

r (AZ

que equivale a:

O

Teorema 1.9. Sea (Q, F, P) un espacio de probabilidad y sea B € F tal que P(B) > 0. Sea
Q(-) = P(:|B) Entonces Q(-) es una medida de probabilidad donde

(@)
(@) Q) =
(Qs) Si{Ai}2; tal que A;NA; =0Vi#j= QUZ, 4i) =372, Q(A:)

QA) >0vVAe F

Proof. Veamos que es cierto

(@) Q(4) = P(A]B) = 428 = P(ANB) > 0y P(B) >0 = Q(A) >0

(Q2) Q) = P(QB) = 200D — Pl

(Q3) Note usted que

o Pl(Uim1 Ai) N B] _ P[U;Z,(Ai N B)]

A oo o0
;»—Zl 1(4i 0 B) ZpﬁmB ZPA|B 3 QA
=1

.. Q es una medida de probabilidad. O

Definicion 1.13 (Independencia de dos eventos). Sean A, B € F, se dice que A y B son
estrictamente independientes <

P(ANB)

P(A|lB)=P(A)< AL B= “PB)

= P(A) . AL B& P(ANB) = P(A) x P(B)

Teorema 1.10. Sean A, B € F talque A | B =
(1) AL B¢
(c2) AL B
(c3) A° L Be.
Proof. Veamos que es cierto
(c1) Se sigue que

P(ANB®) = P(A)— P(ANB) = P(A)— P(A)P(B) = P(A)[1 - P(B)] = P(A)P(B°)

10
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(c2) De forma analoga a (¢1)
(c3) Desarrollando, tenemos que
P(A°NB°)=P[(AUB)|=1—-P(AUB)
=1—-P(A)—P(B
=1-P(A)— P(B
= [1 = P(A)[L - P(B)] = P(A)P(B)

11



Capitulo 2

Variable Aleatoria

Definicion 2.1 (Variable Aleatoria). Dado un experimento en un espacio muestral {2, una
variable aleatoria (VA) X es una funcion que va de  a R, es decir

X: Q=R

Definicion 2.2 (VA Discreta). Decimos que una variable aleatoria X es discreta si hay una
lista finita de valores a1, as, ...a,, o0 una lista infinita numerable a1, as, ... tales que

ZP(X = q; para alguna i = 1,2,...) =1

Definicion 2.3 (PMF). La funcién de masa de probabilidad (PMF) de una VA discreta es
la funcién px dada por px(X) = P(X = z). Formalmente:

p(X=z)=P ({s €| X(s)= x}) — P(X"(z))

Definicion 2.4 (CDF). Decimos que la funcién de distribuciéon acumulada (CDF) de una
VA llamada X cualquiera es la funcion Fx dada por Fx(z) = P(X < z) que cumple

(C3) Ya= Fx(a) = h’m+ Fx(z), la funcion es continua por la derecha.
T—a

(C3) lim Fx(z)=0y lim Fx(z)=1

Tr—r—00 T—> 00

Teorema 2.1. Sea X una VA discreta. Su PMF px cumple las siguientes propiedades:

(P1) Yje€1l,...= px(z;) > 0. Las VA X con probabilidad 0 no se enlistan.
[ee]

(P2) Z:lPX(»Ti) =1
=3

Proof. La primera es trivial por (P;) de Definicion 1.4. Para la segunda, se tiene que:

i=1

12
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Definicién 2.5. Decimos que una VA X es continua si su CDF es diferenciable.

Observacion. No todas las variables aleatorias continuas tienen funciéon de densidad de
probabilidad (PDF) en el sentido clasico, ya que la funcién de distribuciéon acumulada
(CDF) puede no ser diferenciable en todos los puntos.

Definicién 2.6 (PDF). Sea Fix(z) la CDF de una VA continua X = denotamos f(z) como

f@) = L _ po)

y le llamamos a f(z) la PDF de la VA X.
Notacién. Por convenencia, usamos fx para referirnos tanto a PMF y PDF.

Notemos que podemos escribir a la CDF como

Fx(z) = /_x F(t)at

Definicién 2.7. Si una VA continua X tiene una PDF f(x), y se tiene que a < b, entonces,
la probabilidad de que X caiga en el intervalo [a, b] es

b
Pla<xz<b) z/ f(z)dz

Teorema 2.2. Sea X una VA continua. Su PDF fx cumple las siguientes propiedades:
(P1) f(z) >0

(Py) ffooo flx)ds =1

Proof. Notemos que es analogo a una VA discreta, cambiando la suma por la integral. [
Observacion. La PMF da probabilidades exactas en puntos porque la variable es discreta.

La PDF no da probabilidades puntuales, sino densidades; la probabilidad se obtiene inte-
grando la PDF en un intervalo. Por eso, la PDF no es una PMF para variables continuas.

Notacion. Sea X una variable aleatoria con CDF Fx(z) = P(X < z). La funcién de
supervivencia Sx (z) se define como la probabilidad de que X sea mayor que z, es decir,
Sx(z) = P(X >z)=1- Fx(x).

Definicion 2.8. La o-algebra de Borel en R, denotada B(R), es la o-algebra generada por
los intervalos abiertos de R i.e.

B(R) =0 ({(a,b) : a,b € R,a < b})

donde o(+) denota la operacion de generar la sigma-élgebra mas pequena que contiene a ese
conjunto.

Notacion (Espacio Medible). Un espacio medible es un par (€2, F) donde 2 es un conjunto
y F es una o-algebra sobre €.

13
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Observacion. Todo espacio de probabilidad es un espacio medible.
Definicion 2.9 (Funcién Medible). Sea (€2, F) un espacio medible y (R, B(R)) el espacio real
con su o-algebra de Borel. Una funciéon f : 2 — R se dice medible si
VBeBR)= fY(B)eF
Es decir, la preimagen de cualquier conjunto de Borel es un evento.
Definicion 2.10 (Variable Aleatoria Medible). Sea (92, F, P) un espacio de probabilidad y
(R, B(R)) el espacio real con su sigma-élgebra de Borel. Una funcion
X: Q=R

se llama variable aleatoria medible si V B € B(R) se cumple que

X !'B)={weQ: X(w)eB}eF
Es decir, la preimagen de cualquier conjunto de Borel es un evento en 2.

Definicion 2.11 (Vector Aleatorio Discreto). Sea (Q, F, P) un espacio de probabilidad. Un
vector aleatorio discreto en R™ es una funcién medible

X:(X17X2,...,Xn)ZQ—>Rn

tal que X toma valores en un subconjunto numerable de R™ y se cumple

Definicion 2.12 (Vector Aleatorio Absolutamente Continuo). Sea X = (X1, Xs,...,X,) :
Q — R"™ un vector aleatorio. Decimos que X es absolutamente continuo si existe una
funcién fx : R™ — R tal que para todo conjunto medible A C R™ se cumple:

PXeA)= /Afx(x) dx

A esta funcion fx se le llama funcion de densidad conjunta de X.

14



Capitulo 3

Momentos de VA

3.1. E[X]y Var[X]

Definicion 3.1 (Valor Esperado). Sea X una VA discreta con PMF fx(z) = P(X =)y
soporte S C R tal que S = {z € R | fx(x) > 0}. Supongamos que ) ¢ |z[fx(z) < 00 =
se define la esperanza de la VA X como

E[X] := Za:fx(:r) eR

zeS

En caso de que X sea una VA continua tal que [~ |z|fx(z)dz < oo =

E[X] := /00 zfx(x)de € R

— 00

Observacion. Sea 0 <p < 1=

o0 oo o0 o0 d
S apt=> ap”'p=p> ap” ' =p» "
=0 =1 =1 =1

d & d _ (Q=pp_ p
cTZ p( )‘p<1—p>2‘(1—p>2

Lema 3.1. Sea Y > 0 una VA no negativa y continua = E[Y] = [[(1 — Fy(y))dy

Proof. Como Fy (y) = P(Y <y) =

/Oo(l—Fy( dy—/ P(Y > y)dy

- [ (/ fot dt)dy—/ /fy )dy)d
/fy (/ )dt/@ thy (t)dt = E[Y]

O

Observacion. Recordemos que Fy es la funcion de distribucion, fy su derivada: la densidad.

15



3.1. E[X] Y Var[X] CAPITULO 3. MOMENTOS DE VA

Teorema 3.1. Sea X una VA continua. Sea g(x) cualquier funcién no negativa real de X

Bly(o)] = | DG o)

— 00

Proof. Por el Lema 3.1, tenemos que

/ " Plg(e) > y)dy = / N [ /{ R fx(fﬂ)dfv] dy

Integramos en la region de R? = {(z,y) | 0 <y < g(z) < oo}

g(z) g(z)
= / fx(x)dy dx:/ fx(x) / dy | dx
{z€R|g(z)>y} \/O {z€R|g(z)>y} 0

- / o) fx (@)dz
{zeR|g(x)>y}

Elg(z)]

O

Corolario. En caso de ser una VA discreta tenemos que

Elg(z)] = > g(x)fx(z)
Xes
Proof. Anéalogo al Teorema 3.1. O
Ejemplo 3.1. Sea X una VA con FDP
c
fX(x):a z=0,1,2
Proof. Encontremos E[X]
B1X) = S afele) = Yoo
z=0 r=1
Seay=a—1
= - 1 e
—il _ 1., _¢_
Y > g ce= =1
r=1 y=0
Sea g(x) = x2.
Ahora calculemos E[X?]
- S = Y
Seay=x—1
oo (oo}
R N
=e
- 1! 0 =Y
2
=] ¢ + ¢ =] —e =] 2
e e

O
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3.1. E[X] Y Var[X] CAPITULO 3. MOMENTOS DE VA

Observacién. E[X?] # E[X]?

Teorema 3.2 (Propiedades del Valor Esperado). E[-] cumple con lo siguiente
(E1) VAER = E[\] = A
(E3) Para cualesquiera dos funciones g1,g2 : R - Ry V A\ Ao, A3 € R =

E[Mg1 £ A2g2 + As] = ME[g1] £ AE[g2] + A3

(E3) Sea X una VA no negativa P(X >0)=1=E[X] >0
(E4) Sean g1, 92 :R—>R. Si gl(X) > gg(X) =

E[g1(X)] > E[g2(X)]

(Es) Sea X una VA cualquiera con esperanza E[X] = E[|X|] > [E[X]|

(E) Sea X una VA con FDP fx(x) continua y soporte S = R =

oo 0
E[X] = /0 (1 — Fx(x))dx 7/ Fx(x)dx

—0o0

(Er) Vwe Q= |[X(w)| <M t.q M>0=EX] <M<

Proof. Probemos el Teorema 3.2

(E1) EN = [T Mx(@) = A [2 fx(@)=A-1=A

(E2) EAigr +Xag2 4+ As] = 72 (A1g1 & Aaga + A3) fx (z)dz = ME[g1] £ AoE[go] + A3
(E3) P(X20)=1=a2fx(z) >20= [zfx(z)dz > [0dz = E[X] >0

(E4) Notemos que
g1(X) 2 g2(X) = g1(X) — g2(X) =2 0

Por el inciso (E3) s.t.q.
Elg1(X) — g2(X)] 2 0

Y ahora, por (E3) s.t.q.

E[g1(X)] — E[g2(X)] > 0 = E[g1(X)] > E[g2(X)]

(Es) E[-|X]] < E[X] < E[IX]] = -E[|X]] < E[X] < E[.X|] = E[|.X]] > [E[X]|
(Eg) Notemos que

/O fo(x)der/Ooofo(a:)dx

— 00

= /000(1 —FX(x))dx—/O Fy(z)dx

— 00

.. es cierto el Teorema 3.2. O

Observacion. Una VA X no tiene esperanza finita cuando E[X] = oo
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3.1. E[X] Y Var[X] CAPITULO 3. MOMENTOS DE VA

Definicién 3.2 (Varianza). Sea X una VA tal que E[X?] < co. Definimos la varianza de X,

denotada como Var[X] o 02, como

Var[X] = 02 = E[(X — p)?] donde p = E[X]
Observacién. Esto significa que Var[X] = E[(X — E[X])?]

Notacion. Escribimos en el caso discreto y en el caso continuo respectivamente

(X - B[] fx(2) | =B pxc(oin

VX —e9
Teorema 3.3 (Propiedades de la Varianza). Sea X una VA con E[X?] < co = Var[X] cumple
con lo siguiente
(0%) Var[X] = E[X?] — E?[X]
VA eR= Var[A- X] = \? - Var[X]

(o

Var[X] > 0

P)
3)
(03) VA €R = Var[X + )] = Var[X]
(o3)
5)

(02) YAER = Var[X] =0 & X = A

Proof. Probemos el Teorema 3.3

(03) Var[X] = E[X — y]® = E[X? — 2uX + p?] = E [X?] — 2uE[X] + 2
=E[X?] —2p* + p® = E[X?] — p® = E[X?] — E?[X]

(03) Var[A- X] = E[(AX — E[AX])?] = E[(AX — AE[X])?] = E]\*(X — E[X])?]
A2 E[(X — E[X])?] = A2 - Var[X]

(02) Var[X + A] = E[(X + A — E[X + \))?] = E[(X — E[X])?] = Var[X]

(02) Trivial por (E3) del Teorema 3.2.

(02) <= Supongamos que X = A

Var[A] = E[(A — E[A))?] = E[(A - A)*] = E[0] = 0

— Supongamos que Var[X] = 0

0= Var[X] =} (X ~ E[X])*fx(z) =0
VX

=) (X —E[X])’ =0= X =E[X]
v X
=Vwel=X(w)=EX]=X
.". es cierto el Teorema 3.3. O

Definicion 3.3 (Desviacién Estandar). Se define como la raiz postiva de la Definicion 3.2

SD[X] = o = /Var[X]

18



3.2. MOMENTOS Y FGM CAPITULO 3. MOMENTOS DE VA

3.2. Momentos y FGM

Definicién 3.4 (r-ésimo momento). Sea X una VA y r € Z* tal que E[X"] < co = se define
al r-esimo momento de la VA X como E[X "]

Ejemplo 3.2 (r-ésimo momento alrededor de \). Sea X una VA tal que E[X"] < oo, se define
al r-ésimo momento alrededor de A como

E[(X = A)]

Ejemplo 3.3 (r-ésimo momento central). Del Ejemplo 3.2 cuando tomamos a A = E[X] s.t.q.

E[(X —E[X])"]
Observacion. Notemos que la varianza es el segundo momento central de X.

Notacion. Cuando r = 3 llamamos al tercer momento el coeficiente de asimetria .

E[(X — )]

o = 3

o
Cuando r = 4 llamamos al cuarto momento el coeficiente de kurtosis .

E[(X = w1

K= 7

g

Definicién 3.5 (Funcién Generadora de Momentos). Sea X una VA con FDP fx(z) y h > 0.
Supongamos que V't € (—h, h) s.t.q. E[e!X] < co. Se define a la FGM como
mx (t) := E[e!]

donde mx (t) es una funcion de valor real.

Notacién. Escribimos a la FGM en el caso discreto y en el caso continuo respectivamente

oo

mx(t) =Y e fx(x) mx(t) = / e fx () da

zeX —€9

Lema 3.2. Sea X una VA con n-ésimo momento finito.
= E[|X"]] = n/ 2" 11— Fx(z)) + n/ |x|"71FX(—x)
0 0
Proof. Notemos que

00 0 00
BIX)= [ el'fx@ = [ el fx@det [l fx(e)ds

Simplificaremos estas dos expresiones para llegar al resultado

[;MWM@M=/Oﬂﬂ&@M

— 00

0

= (—2")Fx(z) |" +n/ (—z)" ' Fx(x)dx =0+ n/ooo |lz|" " Fx (—z)

— 00
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3.2. MOMENTOS Y FGM CAPITULO 3. MOMENTOS DE VA

Lo cual consiste en la segunda parte de la igualdad.

/OO |z|" fx (x)dz = /OO " fx (z)dz
0 0

=—2"(1-Fx(x)) |5’ +n/ooo "1 - Fx(z)) = n/ooo "1 - Fx(z))

Lo cual compreba al Lema 3.2 O
Lema 3.3. Sea h > 0 y X una VA cuya FGM mx (t) existe para t € (—h, h)

=>mx(t)=1+t

— 00

0o 0
/ (1 - Fx(z))e®dz — / e Fx (x)dx]
0
Proof. Notemos lo siguiente
oo 0 00
mxt)= [ epx@do= [ empx@dot [ e xoys
—o0 —o00 0

Simplificamos, primero a la primera porcion de la suma.

0 0

0
/ e fx(x)dx = e Fx(z) |° o —t/ e Fxy = Fx(0) — t/ e Fx

— 00 — 00 — 00

Ahora, simplificamos la segunda.

/oo et f(2)dz = —e(1 — F(2)) |2 +¢ /oo e dz(1 — Fy ()
0 0

—1— Fx(0) + t/ooo e dz(1 — Fy(z))

Ahora combinamos ambos resultados

0 o]
FX(O)—t/ emFX—i—l—FX(O)—i—t/O e=dz(1 — Fy(x))

— 00

0 0
=1+t / (1 — Fx(x))e"*dzx — / e Fx (z)dx
0 —o00

.. el Lema 3.3 es cierto. O

Teorema 3.4 (Propiedades de FGM). Sea X una VA = mx(¢) cumple con lo siguiente

(m) mx(t) = Yo, LB
(mg) mx(0) =1

(m3) £mx(t) li=o= E[X]

(ma) Fmmx(t) [i=o= E[X"]

(ms) Sea X una VA con FGM mx (t). SeaY =azx +bcona,b € Ry a#0

b

= my(t) = e"'mx(at)

(mg) Sean X,Y VAs = mx(t) =my(t) & fx = fv

(mz7) Sea h >0y X VA con FGM mx (t) < oo para —h <t < h = E[X"] existe Vn > 1
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3.2. MOMENTOS Y FGM CAPITULO 3. MOMENTOS DE VA

Proof. Probemos el Teorema 3.4

(mq) Note que, por Taylor, por teorema de convergencia denominada y por el Teorema 3.1

ce k ce k
mx(t) =EeX] =1 | S S g | 0 ]
k=0 k=0
=P ey S PRI

(m2) E[e*] =E[e’] = E[1] =1
(ms3) Tomemos la primera derivada de la FGM, y por (m1) s.t.q.

d t2 t2
m'y (t) = - |1 BIX] + 51@[){2] +...| = E[X] +tE[X?] + 5E[X3] +
Evaluando en ¢t =0
02
E[X]+0-E[X? + EE[XS] +...=E[X]
Por induccién para n > 1.

(a4

)
(ms) my( ) E[ tY] [et(am+b)] — E[eatm+tb] _ E[eatxetb] _ eth[eatz] _ ebtmx(at)
(mg) mx(t) =my(t) & B[] =E[e"™] & fx = fy
(m7) Ya que X < |X]|, basta probar que E[|X|"] < co. Por el Lema 3.2 basta probar:
oo 0
/ 2" 11 — Fx(z))dx < oo v / |z|"" Fx(z)dz < oo
0 —oo

Primero, notemos que para t € (—h, h)

mX(t):/oo e fx(x )dx<oo:>/ (1 - Fx(x))dr < oo

— 00

Tomamos a t € (0,h) = ((tnz) o < el

2l < M = 2" (1 - Fx(z)) < %(1 — Fx(z))

*(n—1)!- et
= [Tema-pxen < [T B 0 Fet)

Viendo el comienzo de la desigualdad, y por el Lema 3.3, s.t.q.

_ (W;:)! /OOO (1 — Fy () < 00

Segundo, como lo pasado viene de mx (t) < oo, notemos que si t € (—h,0)

0
t/ e Fx(z)dr < 00 =tz >0

— 00
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3.2. MOMENTOS Y FGM CAPITULO 3. MOMENTOS DE VA

Ahora, notemos qué

Ahora, como anteriormente, aplicamos esta integral.

0 0 tx
/ 2" Fx (z)dz < / wFX(:c) < 00

oo oo |t|n—1
Hemos probado ambas desigualdades .. Vn > 1 = E[| X|"] < oo

.. el Teorema 3.4 es cierto. O

Definicién 3.6 (Funciéon Cumulante). Sea X una VA con FGM mx (t) < oo para t € (—h, h).
Se define a la funcion ¥ x (t) como

Ux(t) := In[mx (¢)]
Teorema 3.5 (Propiedades de ¥). Sea X una VA con FGM mx(t) < co para t € (—h,h) =
U x (t) cumple con lo siguiente
(T1) ¥x(0)=0
(¥2) FPx(t) |i=o=E[X]
(U3) & Ux(t) [1—o= Var[X]
Proof. Probemos el Teorema 3.5

(¥1) Ux(0) =In[mx(0)] =In[1]=0

(2) £Ux(t) = LInfmx (1)) = 258 |,_o= ZX = E[X]

mx (t) 1
(¥3) Notemos, por (¥s) que
d? d? m/y (t mx (t)m’% (t) — m/s (£)m/s (¢
@\I/X(t) = @ln[mx(t)] = migt; |t=0= x() X((m)’X(t));(( Jmi (1)
= mg (t) — (m'x(0))* = E[X?] — E*[X] = Var[X]
.". es cierto el Teorema 3.5. O

Definicion 3.7 (Percentiles). Sean X una VA y 0 < p < 1. Se define el percentil p100 %
como 7, € R tal que
Pl <mp)=p y Plx>m)=1-p

Definicién 3.8 (Mediana). La mediana es el percentil 50 % oara X i.e. Me = 7 5

Definicién 3.9 (Cuartiles). Aquellos valores que dividen la distribucién en cuatro partes.

Observacion. Los mediana es el segundo cuartil.
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3.2. MOMENTOS Y FGM CAPITULO 3. MOMENTOS DE VA

Definicion 3.10 (Moda). Sea X una VA con FDP fx(z). La moda de X es el valor Mo € R
que maximiza a fx (z).

En el caso continuo, es el maximo de fx(z)

En el caso discreto, es Mo = x tal que

f(z))
f(xj-1)

f(=5)

=1 y F@s 1)

<1

Observacion. En caso en el que Mo es unico, se dice que es una distribuciéon unimodal. Si
tiene dos, es bimodal. Si tiene més, se le llama multimodal.

Definicion 3.11 (Covarianza). Sean X y Y dos variables aleatorias con esperanza finita. La
covarianza entre X y Y se define como

Cov(X,Y) =E[(X — E[X])(Y - E[Y])]
Equivalentemente, si E[XY] existe,

Cov(X,Y) = E[XY] — E[X|E[Y]

Definicion 3.12 (Matriz de Covarianza). Sea X = (X1, X, ..., X,;) un vector aleatorio con
medias finitas. La matriz de covarianza de X es la matriz simétrica definida por

% = Cov(X) = [Cov(X;, X;)];

i,j=1
Es decir, ¥ es una matriz n x n donde la entrada (¢, j) es la covarianza entre X; y X;
Definicion 3.13 (Vector Aleatorio Gaussiano). Un vector aleatorio X = (X1, Xsa,...,X,) en

R™ se dice gaussiano si para todo a € R™, la combinacién lineal Y = a’ X es una variable
aleatoria normal unidimensional, i.e.

W N(:uv 02)'
Equivalentemente, X ~ A(u,X) con vector de medias p € R"™ y matriz de covarianza

3 € R™ ™ simétrica definida positiva.

Definicion 3.14 (Esperanza Condicional). Sea (£2, F, P) un espacio de probabilidad, X una
variable aleatoria integrable, y G C F una sub-o-algebra. La esperanza condicional de X
dado G, denotada E[X | G], es cualquier variable aleatoria G-medible que satisface

VGGQ:>/E[X|g]dP:/XdP
G G

Definicion 3.15 (Varianza Condicional). Sea (2, F, P) un espacio de probabilidad, X una
variable aleatoria cuadrado integrable, y G C F una sub-o-algebra. La varianza condicional
de X dado G, denotada Var(X | G), es la variable aleatoria G-medible definida por

Var(X | G) =E[(X —E[X | §])? | J]

Ademas, cumple

VGegé/GVar(X|g)dP:/G(Xf]E[X|g})2dP
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Capitulo 4

Familias Parameétricas

4.1. Discretas

Definicion 4.1 (Distribucion Uniforme Discreta). Decimos que una VA X tiene distribucion

uniforme discreta en los valores x1,xs,. .., 2, (es decir, toma valores finitos con igual pro-
babilidad)

XNU(J}l,.’l?Q,...,QTn)

si y solo si su PMF es la siguiente

L st .
F@) = U@ zr,... 20) = {8 i€ o)

donde x1,...,2, € Ry x; # x; para i # j
Observacion. En algunos casos, los pardmetros de U son a,b € R tal que n =b—a+1

Teorema 4.1 (PMF de Uniforme Discreta). Sea X ~ U(z1,...,x,) su PMF f(z) cumple
(U)) Ve eR= f(z) 20

Uz) D oper flz) =1

Proof. Veamos que Teorema 4.1 es cierto.

U) 220= f(z) 20

(UZ) Zze{zl,...,rn} % = % = I

.. Teorema 4.1 es cierto. 0
Teorema 4.2 (Uniforme Discreta). Sea X ~ U(z1,...,2,) =

(Uy) mx(t) = e;((ll_,f:;) FGM
(Uz) E[X] = n—gH Esperanza
(Us) Var[X] = "3t Varianza
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4.1. DISCRETAS CAPITULO 4. FAMILIAS PARAMETRICAS

Proof. Sean X ~U({1,2,...,n}), es decir, P(X = k) = % parak=1,... n.

(Uy) Tomamos la FGM

E[X? = 1 Zn:kg _ % ' n(n+1)6(2n+1) (n+1)éQn+l)
k=1

Var[X] = E[X?] — (E[X])? = (n+1)@2n+1) <n—2|—1)

. Teorema 4.2 es cierto. ]

Definicion 4.2 (Distribucion Bernoulli). Decimos que una VA X tiene distribuciéon Bernoulli
con parametro p (es decir, probabilidad de éxito p)

X ~ Bern(p)

si y solo si su PMF es la siguiente

p siz=1

f(z) = Bern(x; p) = {q: | p siz=0

dondepe[0,1]y P(X=1)=py P(X=0)=1-p

Observacion. La distribuciéon Bernoulli modela eventos discontinuos, es decir, con dos po-
sibles resultados: los cuales se denominan éxito o fracaso.

Teorema 4.3 (PMF de Bernoulli). Sea X ~ Bern(p) su PMF f(z) cumple
(By) Ve eR= f(x) 20

(B2) Xser flz) =1

Proof. Veamos que Teorema 4.3 es cierto.

(B1) pe[0,1]=1—p>0ytambiénp >0= f(z) >0

(B2) Ypepoy f(@)=(1-p)+p=1

.. Teorema 4.3 es cierto. O
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Teorema 4.4 (Bernoulli). Sea X ~ Bern(p) =

(B1) mx(t) = (1—p) + pe* FGM
(B2) E[X]=p Esperanza
(Bs) Var[X] = p(1—p) Varianza

Proof. Sea X ~ Bern(p), es decir, P(X =1)=py P(X =0)=1—p.
(B1) Tomamos la FGM:

mx(t) = E[e"*] = e"%(1 —p) + e"'p = (1 - p) + pe’

(Bz2) Para la esperanza, notemos que:

EX]=01-p)+1-p=p

(B3) Finalmente, para la varianza:
EX*=0*1-p)+1*-p=p

Var[X] = E[X?] — (E[X])?> =p—p®> = p(1 — p)
.. Teorema 4.4 es cierto. ]

Definicién 4.3 (Distribucién Binomial). Decimos que una VA X tiene distribucién binomial
con parametros n € Ny p € [0,1]
X ~ Bin(n,p)

si y solo si su PMF es la siguiente

f(k):(z)pk(l—p)n_k’ k:071""7n

donde n es el nimero de ensayos y p la probabilidad de éxito en cada ensayo.

Teorema 4.5 (PMF de Binomial). Sea X ~ Bin(n,p) su PMF f(k) cumple
(B1) VkeN= f(k)>0

(B2) 2o f(k) =1

Proof. Veamos que Teorema 4.5 es cierto.

(B1) (R)p*A—p)"*>0=f(k) >0

(B2) Yo ()L =p)F=(p+1-pn=1"=1

Esto por el teorema del binomio, que postula

e = (1)t et

k=0
.. Teorema 4.5 es cierto. O

Observacion. Notemos que si n =1 = X ~ Bern
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Teorema 4.6. Sea X ~ Bin(n,p) y definamos a ¢ =1 —p = n — X ~ Bin(n, q)

Proof. Veamos que n — X tiene la PDF de la binomial. Sea Y =n —z

n—
O

Teorema 4.7 (Binomial). Sea X ~ Bin(n,p) =

(B1) mx(t) = (pe’ +1—p)" FGM

(B2) E[X]=np Esperanza

(Bs) Var[X] = np(1—p) Varianza

Proof. Sea X ~ Bin(n,p), es decir, P(X =k) = (})p*(1 —p)" " para k =0,...,n.
(B1) Tomamos la FGM:

_mitX] Nk () kN
mx® =) = 3 e (Lot g = 3

: ) (k) (pe")*(1—p)" " = (pe'+1—p)"

(Bz2) Por Teorema 3.4 derivamos mx (t) y evaluamos en ¢t = 0
mlx (t) = n(pe’ +1 - p)""'pe'

= E[X]=mx(0)=n(p+1-p)" 'p=np

(B3) Derivamos dos veces mx (t) y evaluamos en t = 0 =
mx (t) = n(n —1)(pe" +1 - p)""*(pe")* + n(pe’ +1 - p)"~'pe’

= m/x(0) = n(n —1)p* +np =np((n — )p +1)
= Var[X] = m’% (0) — (m’x (0))* = np((n — 1)p+ 1) — (np)® = np(1 — p)

. Teorema 4.7 es cierto. ]

Observacion. En esta distribucion X contabiliza el nimero de éxitos u ocurrencias que
suceden en n ensayos de Bernoulli independientes.

Definicién 4.4 (Distribucion Poisson). Decimos que una VA X tiene distribuciéon Poisson
con parametro A > 0
X ~ Pois())

si y solo si su funcién de masa de probabilidad es la siguiente

Aee—A

P(X = k) = Pois(k; \) = T

donde X € Rt

Observacion. Esta distribucion es cominmente utilizada para modelar eventos de extrana
ocurrencia. También se usa en el conteo de eventos en un periodo de tiempo determinado.
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Teorema 4.8 (PMF de Poisson). Sea X ~ Poisson(A) su PMF f(k) cumple
(P1) Yk eNg = f(k) >0
(P2) 2okzo (k) =1

Proof. Veamos que Teorema 4.8 es cierto.

(Py) f(k)= )‘k;? > 0 para todo k € Ny pues A > 0 y factoriales son positivos.

(P2)
2 Nee—A

:*AE A |
e e e o
[ !
k! k:ok'

k=0

.. Teorema 4.8 es cierto. O

Teorema 4.9 (Poisson). Sea X ~ Poisson(\) =

(P1) mx(t) = exp(A(e! — 1)) FGM
(P2) E[X] = A Esperanza
(P3) Var[X] = A Varianza

Proof. Sea X ~ Poisson()), es decir, P(X = k) = 2¢ para k =0,1,2,...

(P;) Tomamos la FGM:
()\et kef)\

mx(t) = E[e"X] = Z + —e .M = exp(A(e’ — 1))
k=0 '

(P,) Usamos la funciéon cumulante ¥ x (t) = Inmx (t) = A(e! — 1) y (¥3) del Teorema 3.5

T (t) = Ae' imo=> Ty (0) = A = E[X]

(Ps) Derivando de nuevo y evaluando en ¢ = 0:

U (t) = Ae' |1=o= Var[X] = ¥% (0) = A = Var[X]
.. Teorema 4.9 es cierto. O

Observacién. La moda de la Poisson es |[A\| si A ¢ ZT, y tanto A y A —1si A € ZT

Definicién 4.5 (Distribucién Geométrica). Decimos que una VA Y tiene distribucion geomé-
trica con parametro p € (0, 1]
Y ~ Geo(p)

si y solo si su PMF es la siguiente
P(Y = k) = Gem(k;p) = (1 —p)*p, k€ No

donde p € (0, 1] representa la probabilidad de éxito en un solo ensayo, y k € Ny contabiliza
el ntimero de fracasos que se presentan antes del primer éxito en ensayos ~ Bern(p)
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Teorema 4.10 (PMF de Geométrica). Sea Y ~ Geom(p) su PMF f(k) cumple
(G1) VkeNy= f(k) =0

(Ga2) 3hZo f(k) =1

Proof. Veamos que Teorema 4.10 es cierto.

(G1) f(k)=(1—p)*p > 0 para todo k € Ny pues p € (0,1]

“ = > 1 1
k k
kz:;)(l—p) p=ka:0(1—p) =r a5 =Pt
Esto por la féormula de la suma de una serie geométrica.

.. Teorema 4.10 es cierto. O
Teorema 4.11 (Geométrica). Sea Y ~ Geom(p) =

(G1) my(t) = ﬁ, para t < —In(1 — p) FGM
(Gq) E[Y] = 11'%;) Esperanza
(Gs) Var[Y] = lp_ap Varianza

Proof. Sea Y ~ Geom(p), es decir, P(Y = k) = (1 — p)*p para k =0,1,2,. ..

(G1) Tomamos la FGM:

my (t) = E[e!Y] = Z e (1 —p)rp = pz [(1 —p)et]k
k=0

k=0

p
:w, parat<—ln(l—p)
(G2) Usamos la funcién cumulante Uy (t) = Inmy (t) = Inp — In(1 — (1 — p)e’) y (¥3) del
Teorema 3.5
(1—p)e’ 1-p

Ul (t) = ————— |tmo= —— =E[Y
y(t) - (1—p)e lt=0 » [Y]
(G3) Derivando de nuevo y evaluando en ¢t = 0:
1 —p)e'[l — (1 —p)e'] + (1 - p)*e* 1-p
\If”t:( = U’ (0) = = Var[YV
Y -0 )P VO = = Vel
.. Teorema 4.11 es cierto. 0

Definicion 4.6 (Binomial Negativa). Una VA X es binomial negativa con parametros r € N

y p € (0,1]
X ~ NegBin(r,p)

si y solo si su PMF es la siguiente

k+r—1

)(1 -p)p", keNg

donde X cuenta el namero de fracasos antes del r-ésimo éxito en ensayos i.i.d ~ Bern(p).
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Teorema 4.12 (PMF de Binomial Negativa). Sea X ~ NegBin(r,p) su PMF f(k) cumple
(B1) VkeNy= f(k) >0

(B2) 2o f(k) =1

Proof. Veamos que Teorema 4.12 es cierto.

(By) f(k) = (k"']:_l)(l —p)Fp" > 0 para todo k € Ny, pues r € Ny p € (0,1]

(B2) Para0<p<1

i <k+,:_1>(1—p)sz—pri

kE+r—1
( " )(1—11)’“
k=0 k=0

-7 (r=a=m) =7 (5) =

Esto por la férmula del desarrollo de la serie binomial negativa.

.. Teorema 4.12 es cierto. O

Teorema 4.13 (Binomial Negativa). Sea X ~ NegBin(r, p) =

(B1) mx(t) = (ﬁ) , parat < —In(1 — p) FGM
(B2) E[X] = T(lgp) Esperanza
(B3) Var[X] = rd-p) Varianza

p

Proof. Sea X ~ NegBin(r, p), es decir, P(X = k) = (]H;*l)(l —p)kp” para k =0,1,2,...

(B1) Tomamos la FGM:

oo

mx (t) = E[etX] = ietk (k +; - 1)(1 —p)pT = prkz:% (k +,: B 1) [(1 - pet]”

k=0

Y notemos que, para t < —In(1 — p)

- () -

(B2) Usamos la funcién cumulante ¥ (t) = Inmx(t) = rlnp — rIn(1 — (1 — p)e’) y (¥2)
del Teorema 3.5

U (t) = 1T_(1(1_p;6)€t lt=0= 7; = E[X]

(B3) Derivando de nuevo y evaluando en ¢t = 0:

r(1—p)e'[l — (1 —ple']+r(1 —p)e*

W (t) = 1—(1—p)e2

.. Teorema 4.13 es cierto. O
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Definicién 4.7 (Distribucion Hipergeométrica). Una VA X es hipergeométrica con parame-
tros N, K,n € Ntalesque K < Nyn<N

X ~ HGeom(N, K, n)
si y solo si su PMF es la siguiente
K\ (N—K
() Cai)
N )
(n)
donde X cuenta el nimero de éxitos en una muestra aleatoria de tamano n tomada sin
reemplazo de una poblacién de tamano N con K elementos exitosos.

P(X = k) = HGeom(k; N, K,n) = méx(0,n — N + K) < k < min(n, K)

Teorema 4.14 (PMF de Hipergeométrica). Sea X ~ HGeom(N, K, n) su PMF f(k) cumple
(Hy) VE € [méx(0,n — N + K),min(n, K)] = f(k) >0

min(n,K
(HQ) k::n(léx(()),an+K) f(k) =1

Proof. Veamos que el Teorema 4.14 es cierto.

N-K
(Hy) f(k)= % > 0 pues todos los binomiales son no negativos.

(H2) Notemos que, por el Teorema 1.3

m““z”:’“ 10N _ Ly (K) (VK
, WA A
k=méx(0,n—N+K) n n k
.. el Teorema 4.14 es cierto. 0

Teorema 4.15 (Hipergeométrica). Sea X ~ HGeom(N, K,n) =

(H1) E[X] = % Esperanza
2 ar =n-3- = &5 )] 0 S= arianza
Hy) VarlX] =n- - (1- &) - 4= Vari

Proof. Sea X ~ HGeom(N, K, n)

(Hy) Sabemos que

<Z) B k!(nni I %(k: - 1)!(7(:1—112! (k—1) Z(Z_ D

Y como z = 0 no aporta nada, de la Definicion 3.1

" 2(5)(amd) _nk s GG
R -

Y sil =x — 1, del Teorema 4.14 se tiene a la PMF

ni

= E[X] = I
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(H3) Para la varianza, usamos la Definicion 3.2 y que
E[X? =E[X(X — 1)] + E[X]

Primero calculamos

n K\ /M—-K
BX(X - 1)) = S a(e — 1) el b=z )

= ()
S E[X(X —1)] = n("]\}(lj)\fﬁ)_ )
E[X?] = E[X (X — 1)] + E[X] = ”(”A}(lj\f(fi)_ D %
Var[X] = E[X?] — (E[X])? = n% (1 - A[;) %:’f
. Teorema 4.15 es cierto. -

4.2. Continuas

Definicién 4.8 (Distribucién Uniforme Continua). Decimos que una VA X tiene distribucién
uniforme continua en el intervalo [a, b] con a < b

X ~U(a,b)

si y solo si su PDF es la siguiente

Az

donde a,beRya<bd

Observacion. Esta distribucién modela espacios equiprobables que toman valores en un
intervalo de longitud finita de R, digamos en I = (a,b) con —oo < a < b < 00

Teorema 4.16 (PDF de Uniforme Continua). Sea X ~ U(a,b) con a < b, su PDF f(z)

cumple

(U) Ve eR= f(x) =20
W) [, fl@)de = [} g dz =1

Proof. Veamos que el Teorema 4.16 es cierto.
L z¢€la,b] .
(Uy) f(x) = 0, 1] > 0 pues es constante no negativa o cero.
x ¢ la

(Uz) Notemos que

oo b

1 b—
/ f(x)dx:/ ——dx = = 1
oo o b—a b—a

.. el Teorema 4.16 es cierto. O
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Definicién 4.9 (CDF Uniforme Continua). Sea X ~ U(a,b) con a < b. La CDF de X es

0, z<a
Fl)=P(X <z)=qf= a<z<b
1, x>b

Teorema 4.17 (Uniforme Continua). Sea X ~ U(a,b) =

bt at

) mx(t) = Sg=oy t#0 FGM
(Uz) E[XT] = % r-ésimo momento
(Us) E[X] = GTH; Esperanza
(Us) Var[X] = =2 Varianza

Proof. Sea X ~ U(a,b)

(Uy) Sea t # 0. Usamos la definicion de funcion generadora de momentos:

mXu):E[etX}:/ e“”~b_adz:b_a/ et

b b
1 1 1 zrt!
E[X"] = T ——dp = —— "dr =
X /ax b—a" " b_a ax R — r+1
br+1_ar+1
(r4+1)(b—a)

(Us) Para la esperanza, tomamos r = 1 en el resultado anterior:

¥ —a?> (b—a)lb+a) a+b

T 2b-a) 20-a) 2

E[X]

(Uy) Para la varianza, usamos que
Var[X] = E[X?] — (E[X])*
Tomamos r = 2:

¥ —a®  (b—a)®*+ab+a?)  b*+ab+a?

E[X?) = = =
X7 3(b—a) 3(b—a) 3
a+b\?> a2+ 2ab+ b?
Exy - () -
bV +ab+a® a®?+2ab+0b*  (b—a)?
X] = _ _
= Var[X] 5 i T
.. Teorema 4.17 es cierto. O
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Definicién 4.10 (Distribucion Exponencial). Decimos que una VA X tiene distribucion ex-
ponencial con parametro A > 0
X ~exp(\)

si y solo si su PDF es la siguiente

Ae ™M x>0
0, z <0

f(z) =exp(z;A) = {
donde A € RT

Teorema 4.18 (PDF de Exponencial). Sea X ~ exp(A) con A > 0, su PDF f(x) cumple
(1) Vz eR= f(x) >0

(e2) [T fla)de = [T Ae ™ da =1

Proof. Veamos que el Teorema 4.18 es cierto.

Ae ™M x>0
(e1) f(z)= {Oe o & ; q > 0 pues A > 0 y la exponencial es positiva.
, %

(e2) Notemos que

/ f(x) dr = / )\E_Am dx = A/ e_Am dr = )\ |:_1e_>\-'”:| =) |:_0 + 1:| -1
—00 0 0 )\ )\

.. el Teorema 4.18 es cierto. O

Definicién 4.11 (CDF Exponencial). Sea X ~ exp(A) con A > 0. La CDF de X es

1—e™ >0

0, z <0

Teorema 4.19 (Exponencial). Sea X ~ exp(A) =

(e1) mx(t) =525, t<A FGM
(e2) E[X] = Esperanza
(e3) Var[X] = 3% Varianza

Proof. Sea X ~ exp()), es decir, f(z) = Ae™* para z > 0.

(e1) Tomamos la FGM, y para t < X s.t.q.

o0 o0 A
mx(t) = E[e!X] = / e®re ™ dr = )\/ e~ Oz gy — 2

(e2) Usamos la funcion Ux () =Ilnmx(t) =In A —In t) y (P3) del Teorema 3.5

W (t) =

E[X]

(A —
1 | _ 1
N—t =N T
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(e3) Derivando de nuevo:

W (1) = ﬁ = WL (0) = % — Var[X]

.. Teorema 4.19 es cierto. O

Definicién 4.12 (Funcién Gamma). Sea o € RT. Se define a la funcion Gamma como

o
F(a)z/ t* e tdt
0

Ejemplo 4.1.T'(1) =1

Proof.

O
Teorema 4.20. Va e Rt = T(a+1) = a-I'(a)
Proof. Notese que
MNa)+1= / t%etdt = t¥e ! |3° —|—a/ t*lte7tdt =0+ - T'(a)
0 0
S Ta+1)=a -T'(a) O
Corolario. Va € Zt = T(a+1) = a!
Proof. Suponemos que se cumple para o = k i.e. T'(k+ 1) = k!
Tk+1+1)= / thtle=tdt
0
= thtle=t |% 4 (k + 1)/ the7tdt = (k+ DI (k+1) = (k+ k! = (k4 1)!
0

~Tla+1)=a! O

Teorema 4.21.Va e RT =T (3) = 7

Proof. Sea ¢ = T'(3

1 2 o0 —u? o0 2
:>/ —e v 2udu:>c=2/ ue du=2/ e " du
o U 0 u 0

c-c= 4/ 67“2du/ eV dv
0 0
o0 o0 o %
4/ / e~ (W) dudy
o Jo

)= [ ti e tdt = [° %e’tdt. Ahora tomamos u? =t y 2udu = dt

Notemos que

Por el Teorema de Fubbini
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Seau=rcosfyv=rsinb

9u  Ou — Pt
R p—
or o0

o0 % 2 ;2 9 2 2 9 > % 2
= 4/ / (e7m SmPTT oS edfdr = 4/ / e " rdfdr
o Jo o Jo

2 3 T [ 2
= 4/ re " / do | dr = 4—/ re” " dr
0 0 2 Jy

Sea w = r? y dw = 2rdr

_2m [

2 Jo

ST (3)=vr O

oo
e_“’dw:ﬁ/ e Pdw=r=>C=r=>c=1
0

Definicién 4.13 (Distribuciéon Gamma). Decimos que una VA X tiene distribucién Gamma
con parametros 7 >0y A > 0

X ~ Gamma(r, \)

si y solo si su PDF es la siguiente

— . — A r—1_—Ax
f(z) = Gamma(z;r, \) = I‘(r)x e x>0

donde r, A\ € Rt y I'(r) es la Definicion 4.12.

Teorema 4.22 (PDF de Gamma). Sea X ~ Gamma(r, \) con 7, A € R*, su PDF f(z) cumple

(T1) VzeR= f(x) 20

(T'2) ffooo f(z)dx = 000 1‘/\(;) 2T le= A% dp — 1

Proof. Veamos que el Teorema 4.22 es cierto.

AT =1,z

(1) f(:r){””x T Be

0, <0
Esto como todos los factores son no negativos para = > 0.

(T'2) Notemos que

e} ee} AT /\r oo
f(z)dx = / T le Ay = . / " le A dy,
[oo o I(r) L'(r) Jo

Seauzx\xydx:%du

N © "t 1 A1 [
_ , u N - B rleTU dy = 1.
T(r) / <A> C XTI Ar/o oo

.. el Teorema 4.22 es cierto. O

Observacion. Esta distribucion tiene usos importantes en la econometria.
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Definicién 4.14 (CDF Gamma). Sea X ~ Gamma(r,A) con r >0y A > 0. La CDF de X es

xr )\r
F(z) = P(X <) = / I
0, z <0

e Mdt, x>0

Teorema 4.23 (Gamma). Sea X ~ Gamma(r, \) =

(T1) mx(t) = (ﬁ) t<A FGM
(2) E[X"] = I;ELT;(:L)) n-ésimo momento
(I's) E[X] = § Esperanza
(Fy) Var[X] = 15 Varianza

Proof. Sea X ~ Gamma(r, \)

(T'1) Sea t < A. Por definicion de funcion generadora de momentos:

oo )\r )\7‘ o0
) =F tX1 / tr r—1_—Xz dr = / r—1_—(A—t)z d
mx(t) [e"*] A e I‘(r)x e x T J, " e x

(T'2) Para n € N usamos la definicion de momento:

E[X"] = /00 z™ - N 2" le A dy = A /00 gl dy
0 I(r) L(r) Jo

Hacemos el cambio v = Az, du = Adzx, z = u/X:

" © /u n+r—1 1 AT 1 00
= — — UL du = . n+r—1 —u g
T(r) / <A> DS (5 W/o oo

L(n+r)

—ArT(r)

(I's) Para la esperanza, tomamos n = 1:

(Ty) Para la varianza usamos que Var[X] = E[X?] — (E[X])? y tomamos n = 2:

L(r+2) (r+1rC(r) r(r+1)

E[X?) = = =
X7 A2D(r) A2D(r) pX

2 2
2_ () -
&xr-(3) -5

rir+1) 1?2 T

= Var[X] = o T2

.. Teorema 4.23 es cierto. O
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Observacién. Notemos que si 7 =1 = X ~ Gamma(1l,\) = X ~ exp())

Ejemplo 4.2 (Erlang). Si X ~ Gamma(r,A) con r € Z* =
X ~ Erlang(r, \)

si y solo si su PDF es la siguiente

A7 1w
f(z) = Erlang(x;r, \) = mgﬂ e x>0

donde se usa que I'(r) = (r — 1)! cuando r € Z*.

Ejemplo 4.3 (Distribucién Ji-Cuadrada). Si X ~ Gamma(r,A) con r = % VA= %, para
algtin k € Z* = X tiene una distribuciéon Ji-Cuadrada con k grados de libertad

X ~x*(k)
si y solo si su PDF es la siguiente
1
2 - - k/2-1_-z/2
@) = k) = g e @20

donde k € Z™ representa el nimero de grados de libertad.

k
2

N

Proof. Sear =%y A =

Heredamos de Teorema 4.22 las pruebas de la PDF y de Teorema 4.23 podemos sacar

0w) mx() = () t<r=}- (it)g =yt = (-2

2

(x2) EX] =5 =

ol
Il
-

(x3) Var[X] = 7z = & =2k

.. la Ji-Cuadrada es una distribucion. O
Definicion 4.15 (Funcién Beta). Sean «, 8 € RT. Se define a la funcion Beta como

1
B(a, f) :/0 w1 —w)Pldu

Teorema 4.24. La relaciéon entre la Funcion Gama y Beta es la siguiente

L(a)T'(B)

BB = Ta1p)

Proof. Consideramos el cambio de variable en la integral doble de dos funciones Gamma

F(a)F(ﬂ):/ x> le™® dx-/ yﬁfle*ydy:// 2 P le= @) qg dy
0 0 R%

Seau:x—i—yyt:ﬁyix:utyy:u(l—t)
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El jacobiano de esta transformacion es [J] = u, entonces

Ma)'(B) = //>0 e 1)(ut)°‘*1(u(1 — )’ te  udt du

1 o0
:/ 21 —t)’B_ldt-/ u*tP=le=" du = B(a, B) - T'(a + f)
0 0

Luego,

.. el teorema es cierto. O

Definicién 4.16 (Distribucién Beta). Decimos que una VA X tiene distribucion Beta con
pardmetros a > 0y >0
X ~ Beta(a, 8)

si y solo si su PDF es la siguiente

1
B(a, §)

donde B(«, ) es la Definicion 4.15 y o, 8 € R

f(z) = Beta(z; o, 8) = 11 —2)P71, ze€(0,1)

Teorema 4.25 (PDF de Beta). Sea X ~ Beta(a, ) con «, 8 € RT, su PDF f(x) cumple
(By) Ve eR= f(z) >0

(B2) [ f(a)dz = [} s 1 —z)fldr =1

Proof. Veamos que el Teorema 4.25 es cierto.

1 _ga-l(] _ )81 4
(B1) f(w){g(“"” - Zgggw

Esto ya que todos los factores son no negativos para z € (0,1) y o, 5 > 0.

(B2) Notemos que

[e'S) 1
[m f(z)da::/o B(Oiﬁ)zo‘*l(lfx)ﬁfldx: B 1 -B(a, 8) = 1.

.. el Teorema 4.25 es cierto. O

Definicion 4.17 (CDF Beta). Sea X ~ Beta(a,8) con a > 0y > 0. La CDF de X es

B(z;a, 8)

P =0 5)

= Iw(a76)

Teorema 4.26 (Beta). Sea X ~ Beta(a, 3) con a, B € RT =

(B1) E[X"] = Bg{j’;;)ﬁ) =I5 == r-ésimo momento
(B2) E[X] = P Esperanza
(Bs) Var[X]= W Varianza
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Proof. Sea X ~ Beta(a, 3)

(B1) Para r € N, usamos la definiciéon del momento:

A = ' TM - 1 ' rta—=1c1 _ .\8-1 _Bla+r5)
E[X]_/o " " Bla,p) d””‘B(a,m/o # (L —a) e = =50 )

(B2) Para la esperanza tomamos r = 1:

_ B(a+1,8) «
B(a, ) a+p

(B3) Para la varianza usamos Var[X] = E[X?] — (E[X])? con r = 2:

y Blat28)  alatl)
B ="8ep) @i PErsrD

=7 = (335) = @i

ala+1) B o? _ o
(@+B)a+p+1) (a+h)? (a+B)(a+B+1)

= Var[X] =

.. el Teorema 4.26 es cierto. O

Definicién 4.18 (Distribucién Pareto). Decimos que una VA X tiene distribucién Pareto con
parametros a >0y 6 >0

X ~ Pareto(c, 0)

si y solo si su PDF es la siguiente

af®
f(z) = Pareto(x; o, 0) = s Tiz>0y

donde « es el parametro de forma y 6 el parametro de escala.

Teorema 4.27 (PDF de Pareto). Sea X ~ Pareto(a, ) con o, € RT, su PDF f(z) cumple
(P1) Ve eR= f(z) >0

(P2) ffooo flz)de = feoo ;‘%pfl der =1

Proof. Veamos que el Teorema 4.27 es cierto.

(Py) f(z) = % Iz>9y 2 0yaque a,0 >0y x> (0 para = > .

> > aea @ > —a—1
[mf(x)dx:/e de:aﬁ/e x dx.

Como «a > 0, la integral converge:

a@o‘lx] :aﬂa-<0—0>:1.
—a| —a

.. el Teorema 4.27 es cierto. O

(P3) Notemos que
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Definicién 4.19 (CDF Pareto). Sea X ~ Pareto(c,6) con a >0y 6 > 0. La CDF de X es

F(z;a,0) =1— <9> , =0

T

Teorema 4.28 (Pareto). Sea X ~ Pareto(w, ) con a,f € RT =

(Py) E[X"] = g‘f: r <o r-ésimo momento

(P2) EX]=2L a>1 Esperanza
2 .

(P3) Var[X] = % a>2 Varianza

Proof. Sea X ~ Pareto(a, 6)

(Py) Parar < a:

E[X"] = / " af®r  de = 049“/ "ty
0 0

r—ao a—T a—T

:aﬁo‘-[x_ 1 _ af gr—a _ ad

(P3) Para la esperanza tomamos r = 1, requiere a > 1:

af

P3) Para la varianza usamos que Var[X]| = E[X?] — (E[X])? y requiere o > 2:
( q y req

2 af? o262 af?
) = VX = S T G T G- 1=

ab
a—1

ey =

.. el Teorema 4.28 es cierto. O

Definicién 4.20 (Distribucion Normal). Decimos que una VA X tiene distribucién normal
con media p y varianza o (es decir, de parametros u y o)

X ~ N(ﬂ702)

si y solo si su PDF es la siguiente

f(&) = N(@; ,0%) = — .exp[—;c_u)T

donde p € Ry o2 >0

Teorema 4.29 (PDF de Normal). Sea X ~ N (u,02?) con u e Ry 02 > 0=

(M) VzeR= f(z)>0

(N2) [, fla)da = [, 2 - exp [—é (%“)1 dz = 1
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4.2. CONTINUAS CAPITULO 4. FAMILIAS PARAMETRICAS

Proof. Veamos que el Teorema 4.29 es cierto.

2
(NM1) Claramente f(z) = a\}? - exp [é (”“;“) ] > 0 para todo = € R, ya que exp(z) > 0

para todo z real y ¢ > 0.

(N2) Consideramos el cambio de variable z = *=£ = dx = o dz. Entonces

e (1 1/z—p\° N A Syt
/ﬂ)of(x)dx—/iooa 271_expl—2( . )]da:—/oo Tﬂe dz

Definimos [ := ffooo e~*"/2 dz. Entonces

o0 2 ? o0 o0 2 2 2 2
I’ = / e % /2dz :/ / e~ HY)/2 o dy :/ e~ @ HYI/2 - dy
—00 —00 J —00 R2

Ahora usamos coordenadas polares: x = rcosf, y = rsinf

=dxdy=rdrdfy z?+y>=r?

27 e’}
I’ = / / e 2 dr do
0 0

2
Sea u = %5 = du = rdr, entonces

27 o 27
I2=/ </ e‘“du)d&z/ 1-df =2r
0 0 0

Por tanto, I = /27, asi que

> 1 2 1
e Py = —— o =1
e 2z ™
/,Oo Vo V2T

.. el Teorema 4.29 es cierto. O

Definicién 4.21 (CDF Normal). Sea X ~ N (u,02) con u € Ry 02 > 0. La CDF de X es

x—p
T— [ 1 T 2

F(x;p,0%) = z—/ e /2 dt

@t =o () == [

Teorema 4.30 (Normal). Sea X ~ N (u,02) con uy € Ry 02> 0=

(M1) mx(t) = E[etX] = exp (ut + %) FGM
(N2) E[X] =p Esperanza
(N3) Var[X] = o2 Varianza

Proof. Sea X ~ N (u,0?)

(NV7) Calculemos la funcién generadora de momentos:

mx(t) = E[e"*] = /_Do e fx (z) dx = /_OO et o\}ﬂ exp (-W) dz
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4.2. CONTINUAS CAPITULO 4. FAMILIAS PARAMETRICAS

completamos el cuadrado en el exponente,

(z — p)? 1
to = = =g (0= P = 20w — ) +
o022
— 4+t
2 e

Notemos que

2,2
tput oot o — u— 02)?
mx(t) = exp <_(‘”/;U20)> do

Hacemos el cambio de variable y = %ﬁzt, entonces dr = ody y

o242

mx(t) = etttz e

1 /oo _%d O
— e =e
V2T J oo g

(N3) Usamos la funcién cumulante ¥ x (¢) = Inmx (t) = ut + # y (¥3) del Teorema 3.5

U (t) = p+ 0°t |r=0= p = E[X]

(N3) Derivando de nuevo y evaluando en ¢t = 0:

U (t) = 0? = % (0) = 0% = Var[X]
.. Teorema 4.30 es cierto. O

Observacién. La normal (u,02) cumple E[X] = Mo = Me

Teorema 4.31. Sea X ~ N (p,0%). Sea a,b#0 € R. Sea Y = aX +b.

=Y ~ N(ap +b,a%0?)

02 2 .
Proof. Como mx (t) = e#t+*2~ = E[e!¥] sustiyamos por Y

my(t) _ ]E[etY] _ E[et(aXer)] _ eth[etaX]

0'2 0'2

2 2 2,2
ot pa+b)t4I—4-t=

:6(

at?
etb <€,uat+ 5 ) _ euatthbJr

Y ~ N(ap +b,a%0?) O
Corolario. Si X ~ N(p,02) =Y = X — pu ~ N(0,02?)

Teorema 4.32. Sea X ~ N (u,0?)yY =X —p

, 0 sir es impar
E[(X —p)"] = {leg%

K12k

= E[Y"]

sir es par

Proof. Caso 1: r es impar

o 15 o v’
E[Y]:/ V' fom e O o2 | W
— 00 .
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4.2. CONTINUAS CAPITULO 4. FAMILIAS PARAMETRICAS

(o] 2

Ly g LA L fmo=o
=— lim exp | —=—— =— lim 0=
V2T o t=oe J_ o A ST V2T - g t=oo

Caso 2: r es par

Recordemos que

t2 t3 0 tZkE[YQk]
=1+tE[Y]+ =E[Y? ]+ =EY3]=...=) ——
my () = 1+ E[Y] + S E[Y?] + S E[Y?) >
Por otro lado si Y ~ N (0,0%) =
o242 > # 0 2ks2k
vt =e | %] <3 () - X T

Estas dos ecuaciones son iguales si los coeficientes de t2k i.e.

E[ka] _ UQk
2k kI2k
Despejando a E[Y 2] s.t.q.
- 2kl 2k
BTl = T
.. el Teorema 4.32 es cierto. O

Corolario. Sea X ~ N (u,0?) = el coeficiente de asimetria a = 0 y de kurtosis K = 3

Proof. Por el Teorema 4.32, como 3 es impar

L_E(X-w’) _ENY

Ahora, como 4 es par

ot ot ot
tot AU,
2122454 8

O

Ejemplo 4.4 (Distribucion Normal Estandar). Decimos que una VA X tiene distribucion
normal estandarizada si sigue la Definicion 4.20 con pu =0y o = 1.

X ~N(0,1)

es decir, su PDF es

La CDF se denota como

Proof. Todas las propiedades de la PDF se heredan del Teorema 4.29. O
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4.2. CONTINUAS

CAPITULO 4. FAMILIAS PARAMETRICAS

y soporte S. Sea Y = ¢g(X), con g : S —

Teorema 4.33 (Teorema de la Transformacion). Sea X una VA continua con densidad fx ()

R continua, biyectiva y derivable, con inversa

z =g (y) tal que g (y) #0.

S fely) = ];‘;gﬂy)\fx (6" @) Is- (&)

donde S* = g(5) es el soporte de Y.
Proof. Caso 1:

Supongamos que y = g(x) es monotona creciente. En ese caso

Como g es continua, derivable, y biyectiva =

d d d

Frly) = g Fr(y) = 5 Fy (6" ) = fx(g“(y))@g“(y)

’;;g“(y) ‘fx (97 ) Is<(y)
Caso 2:

Supongamos que y = g(x) es monotona decreciente. En ese caso

Esto como g(x) es monotona decreciente. Luego

d d d

fy(y) = —Fy(y) = @[1 - Fx(9" (y)] =

= Fly) = ’;;g“(y)‘fx (6" W) Is- (3)

. el Teorema 4.33 es cierto.

Normal si log X ~ N (u,0?), es decir,

B log/\/(u, 02>

Entonces, su PDF es

f(@) = log (25 p, 0°) =

1
exp | —
xoV/ 2T pl 202

donde p € Ry 02 > 0 son los parametros de la normal subyacente.

Proof. Sea Y = log X ~ N (u,0?)

45

Fx(y)=P(Y <y)=Pg(x) <y)=P(X =29 (y)) =1—- Fx(9°~

d 1 1 (logx — w)
= |[==11 - fr (1 =S S = e o7
= fx(0) = | Towa - i (og) = © amexl’l =
1 1 — )
= f(z) = expl—(ngzﬂ)‘|, x>0
roV2m 20

()

Ejemplo 4.5 (Distribucién Log-Normal). Decimos que una VA X tiene distribucion Log-
1 _ 2
wgfvm] a0

Usamos el Teorema 4.33 con X = e¥ = Y = log X, que es biyectiva, continua y derivable.
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4.2. CONTINUAS CAPITULO 4. FAMILIAS PARAMETRICAS

Ademas, del Teorema 4.30 podemos obtener:

o2r2
2

(L1) mx(t) =E[e'X] = et
(Lg) E[X] =exp (H + 0;)

(Lz) Var[X] = (ea2 _ 1) J2uto?

.. la Log-Normal es una distribucion.
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Capitulo 5

Teoremas de Limite

5.1. De Moivre-Laplace
Notacién. Denotamos 6(n) a una funcion tal que 6(x) — 0 rapidamente cuando n — 0.

Teorema 5.1 (Teorema de De Moivre-Laplace). Sea X ~ Bin(n,p) conp# 001

Cuando n — 0o
X ~ N(u=np,0® = npq)

Es decir, para k en un entorno de np, se puede aproximar

(k — np)®

1

k n—k

_ = , +qg=1, p,g>0.
(k)p 4 T /2mnpq xp( 2npq ) P P

Proof. Notemos que esto es equivalente a demostrar que Z = m;f;z ~ N(0,1)

Busquemos la FGM de Z

—ex —npt
it = (2 (

—pt
= |exp| 2= | [g+p-ex
Vg

= q~exp<

u

tq
+p-exp
”pq
Ahora, notemos que e* =1 +u + 5 +

—pt pt A
=e =1- aly = als
P ( ) VIPq  /2npg  \/3npg

c,o‘ﬁ

N
0(n)—0
—pt qpt qp*t? —pt qpt pg°t?
q-evrri =g - + +0(n) y q- eV =p-— + +0(n)
VIpq - \/2npgq VIPq  \/2npq
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5.2. DESIGUALDADES CAPITULO 5. TEOREMAS DE LIMITE

Sumando las dos expresiones s.t.q.

t t 2 qt?
w + w + b + i +6(n)
Jnpq  /mpqg  2n 2n

= q +tp-—
—~—

1-p

Sustutuyendo en la FGM de Z

n
—pt o +2
mZ(t) = |:q-e\/nm +p.e\/npq:| = ]_-|-27+6(n)
n
t2 n t2 n .2
= lim |1+ —+6 = lim |1+ —| =e?
A | g | =l gy =

Y recordamos del Ejemplo 4.4 que esto es la FGM ~ A(0,1)

T —np
Vv 1pq
5. X ~ N(np,npq) O

7 =

— oo N(0,1)

5.2. Desigualdades

Teorema 5.2 (Desigualdad de Markov). Sea X una VA no negativa con media finita y ¢ > 0

Con t > 0 s.t.q

/  hx(@ye + | aix@is> [ | olx(a)s

<t
= zfx(z) > tfx(x)
——

x>t
dx > dx = - d
:»/mxfxm x>/x>ttfx(w) . / tfx (@)de
= E[X] >t/°o fx(@)de = E[X] > tP(X > 1)

S P(X >t < BX O

Teorema 5.3 (Desigualdad de Tchebyschev). Sea X una VA con varianza 0? € RT y media

. Seat >0
2

g
= P(X —ul 2)

Proof. Sea Y = (X — )2 >0

E[Y]=E[(X - p)*] =0

48



5.2. DESIGUALDADES CAPITULO 5. TEOREMAS DE LIMITE

Aplicando Teorema 5.2 con t2 > 0

E[Y] o?
PY 28 < =5 ¢ P(X -’ > < 57
2
g
PX -1l 2)%
.. es cierto el Teorema 5.3 O

2

Corolario. P(|X —p|<t)21-%

2

Corolario. P(|X — p| 2 to) < 5y

Corolario. P(|X —p| <to) 21— %

Observacién (Taylor). Si fx(x) es dos veces derivable en ¢ =

flle)x—c) | f'(c)(x—c)?
T 91

fx(@) = fle) + +...

Por el Teorema de Valor Intermedio 30 < ¢ < c tal que

f&) = £ + fOa — )+ L2

Teorema 5.4 (Desigualdad de Jensen). Sea X una VA conE[X] < coy g : R — R con
E[g(X)] < 00 =

(J1) Sig(z) es concava = E[g(X)] > g(E[X])

(J2) Si g(x) es convexa = E[g(X)] < g(E[X])

Proof. Aplicando Taylor con g(z) alrededor de

9O@—n  g"E=p?

Elg(X)] = Elg(u)] + /() (z — )+ L B[z - )
=0
= Efg(x)] = o(E[x)) + L E[(z - )7

Si g es concava g”(§) > 0 =

E[g(X)] > g(E[X])
Si g es convexa g”(£) > 0 =

Efg(X)] < g(E[X])
.. el Teorema 5.6 es cierto. O

Corolario. Sea X una VA con media E[X] < co y g(X) = X2

E[X?] > E[X]? = E[X?] > E?[X] > 0
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53. LGNY TCL CAPITULO 5. TEOREMAS DE LIMITE

Teorema 5.5 (Desigualdad de Chernoff). Sea X una variable aleatoria y ¢t > 0
VaeR= P(X >a) < e *E [etx]

Esta cota es valida siempre que E [etx ] < 0o De manera anéloga, si t < 0,

P(X <a) < e R [etX]

5.3. LGNy TCL

Definicion 5.1 (Convergencia Puntual). Sea un espacio de probabilidad (2, F, P). Diremos
que la sucesion de VA (que son funciones) X,, converge puntualmente a X si

P(h’m anx)=1

n—oo

Definicién 5.2 (Convergencia de Probabilidad). Sea un espacio de probabilidad (€2, F, P).
Diremos que la sucesion de VA X, converge a la VA X si Ve > 0 s.t.q.

lim P (|X, - X|>¢)=0
n— oo

i.e. cuando n — oo la probabilidad de que la sucesion de VA X, este lejos de X es nula.

Notacién. Podemos denotar la convergencia en probabilidad como X,, 5 X

Teorema 5.6 (Ley de Kolmogorov). La media muestral X, converge puntualmente a la

esperanza, o media poblacional E[X,,] = p. Recordando que las VA son funciones de @ — R

Cuando n — 0o -
VseQ= X,(s) = p

Es decir
P(h’m Xn—u>—1
n— oo

Teorema 5.7 (Ley de Khinchin). Cuando n — oo
X, 5
Es decir, Ve > 0
lm P <’Xn _ ”D )
n—oo
Proof. Usamos el Teorema 5.3. Supongamos un ¢ > 0 fijo pero arbitrario

2

P(’Xn—u)>e> <72
n-e

Cuando n — oo el lado derecho tiende a cero. O

Notacién. Nos referimos al Teorema 5.6 como la Ley de Grandes Numeros (LGN) fuerte al
Teorema 5.7 como la LGN débil.
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53. LGNY TCL CAPITULO 5. TEOREMAS DE LIMITE

Teorema 5.8 (Teorema Central del Limite). Sea (Q, F, P) un espacio muestral. Suponga-
mos que tenemos X1, Xo,... € F C Q) variables aleatorias independientes e identicamente
distribuidas con media poblacional y y varianza o2, y media muestral X,

Cuando n — 0o
Xn—p

\/ﬁ< )%N(O,l)

Observacion. Es decir, cuando n se hace muy muy muy pero muy muy grande, al hacer
la estandarizacion de la distribucion de la VA X, se acerca a una distribucién normal
estandar.

Teorema 5.9 (Aprox. de TCL). Para grandes n, la distribucién de X,, es aproximadamente

2
)

Lema 5.1 (Lema de Borel-Cantelli). Sea (A,,),>1 una sucesiéon de eventos en un espacio de
probabilidad (2, F, P).

(B1) Si Y. 2, P(A,) < oo, entonces

P (h’m sup An) =0
n—oo

es decir, la probabilidad de que ocurran infinitos A,, es cero.

(B2) Si los eventos A,, son independientes y > > | P(A,) = oo, entonces

P <h’m sup An) =1

n— oo

es decir, ocurren infinitos A,, casi seguramente.

Definicion 5.3 (Funcién Caracteristica). Sea X una variable aleatoria con distribucién en
R™. La funcién caracteristica de X es la funcién px : R™ — C definida por

@x(t) = E |4 )]
donde (¢, X) denota el producto interno usual en R" e ¢ = /—1.
Teorema 5.10 (Teorema de Continuidad de Lévy). Sea (X,,)n>1 una sucesion de variables

aleatorias con funciones caracteristicas ¢x,, y sea X una variable aleatoria con funciéon
caracteristica ¢x. Entonces,

X, 35X o VteR= px (t) = ox(t)

Es decir, la convergencia en distribuciéon de X,, a X es equivalente a la convergencia puntual
de sus funciones caracteristicas.

51



	Fundamentos
	Espacio de Probabilidad
	Análisis Combinatronico
	Probabilidad Condicional

	Variable Aleatoria
	Momentos de VA
	E[X] y Var[X]
	Momentos y FGM

	Familias Paramétricas
	Discretas
	Continuas

	Teoremas de Límite
	De Moivre-Laplace
	Desigualdades
	LGN y TCL


