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Capítulo 1

Fundamentos

Las siguientes son notas de clase del curso de Probabilidad del Act. Servando Valdés Cruz de la
Facultad de Ciencias de la UNAM. Estas notas fueron originalmente escritas por Magali Díaz.

1.1. Espacio de Probabilidad

Definición 1.1. Un espacio de probabilidad es la terna (Ω,F , P ) donde Ω ̸= ∅ es el espacio
muestral, F es una σ-álgebra de subconjuntos de Ω, y P es una medida de probabilidad.

Definición 1.2. Se dice que F es una σ-álgebra de subconjuntos de Ω ̸= ∅ ⇔

(F1) Ω ∈ F Universalidad

(F2) A ∈ F ⇒ Ac ∈ F Cerrado Bajo Complementos

(F3) An ∈ F ∀ n ∈ N ⇒
⋃

n∈N An ∈ F Cerrado Bajo Uniones

Teorema 1.1 (Propiedades de σ-álgebra). Sea F una σ-álgebra de subconjuntos de Ω ̸= ∅ ⇒

(F1) A1, ..., An ∈ F ⇒
⋃n

i=1 Ai ∈ F ∀n ∈ N Cerrada Bajo Uniones Finitas

(F2) ∅ ∈ F Conjunto Vacio

(F3) An ∈ F ∀n ∈ N ⇒
⋂

n∈N An ∈ F Cerrada Bajo Intersecciones Numerables

(F4) A1, ..., An ∈ F ⇒
⋂n

i=1 Ai ∈ F ∀n ∈ N Cerrada Bajo Intersecciones Finitas

(F5) A1, A2 ∈ F ⇒ A2 \A2 ∈ F . Diferencia de Conjuntos

Proof. Probemos el Teorema 1.1

(F1) Sea A1, . . . , An ∈ F . Definimos una sucesión:

Bk =

{
Ak si k ⩽ n

∅ si k > n

⇒
∞⋃
k=1

Bk =

n⋃
i=1

Ai
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1.1. ESPACIO DE PROBABILIDAD CAPÍTULO 1. FUNDAMENTOS

Como cada Bk ∈ F por (F2)

⇒
n⋃

i=1

Ai ∈ F

esto por cerradura bajo uniones numerables.

(F2) Como Ω ∈ F y F es cerrada bajo complementos ⇒ Ωc = ∅ ∈ F .

(F3) Sean {An}n∈N ⊆ F ⇒ ∀ n ⇒ Ac
n ∈ F , y por (F1) ⇒

⋃
n∈N

Ac
n ∈ F ⇒

⋃
n∈N

Ac
n

c

=
⋂
n∈N

An ∈ F .

(F4) Sean A1, . . . , An ∈ F , y por (F1) ⇒

n⋂
i=1

Ai =

 n⋃
i=1

Ac
i

c

∈ F .

(F5) Sean A1, A2 ∈ F . Entonces Ac
2 ∈ F y, como F es cerrada bajo intersecciones finitas:

A1 \A2 = A1 ∩Ac
2 ∈ F .

∴ Teorema 1.1 es cierto.

Definición 1.3 (Evento). Se dice que A es un evento ⇔ A ∈ F ⊆ Ω

Definición 1.4 (Medida de Probabilidad). Se dice que P es una medida de probabilidad ⇔

(P1) P (Ω) = 1

(P2) ∀A ∈ F ⇒ P ⩾ 0

(P3) Si {Ai}∞i ∈ F | Ai ∩Aj = ∅ ∀ j ̸= i ⇒ P (
⋃∞

i=1 Ai) =
∑∞

i=1 P (Ai)

Teorema 1.2. Sea P una medida de probabilidad ⇒

(P1) P (∅) = 0.

(P2) Sean A1, ..., An eventos ajenos ⇒ P (
⋃n

i=1 Ai) =
∑n

i=1 P (Ai).

(P3) ∀A ∈ F ⇒ P (A) = 1− P (Ac).

(P4) Sean A,B ∈ F ⊆ Ω y A ∈ B ⇒ P (B \A) = P (B)− P (A) y P (A) ⊆ P (B).

(P5) Sean A,B ∈ F ⊆ Ω ⇒ P (A ∪B) = P (A) + P (B)− P (A ∩B).

(P6) Sean A,B,C ∈ F ⊆ Ω ⇒
P (A∪B∪C) = P (A)+P (B)+P (C)−P (A∩B)−P (A∩C)−P (B∩C)+P (A∩B∩C)

(P7) Se cumple la fórmula de inclusión y exclusión.

(P8) Sean A,B dos eventos cualesquiera ⇒ P (A) = P (A ∩B) + P (A ∩Bc).

(P9) Se cumple la desigualdad de Boole.
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1.1. ESPACIO DE PROBABILIDAD CAPÍTULO 1. FUNDAMENTOS

Proof. Probemos el Teorema 1.2

(P1) Notemos que podemos expresar

∅ = ∅ ∪∅ ∪∅ ∪ ... ∪∅ y ademas ∅ ∩∅ = ∅

Por la Definición 1.4

P (∅ ∪ ... ∪∅) =

∞∑
i=1

P (∅) ⇔ P (∅) =

∞∑
i=1

P (∅)

Ya que
P (A) ⩾ 0 ∀A ∈ F y ademas ∅ ∈ F ⇒ P (∅) = 0

(P2)
⋃n

i=1 Ai =
⋃∞

i=1 Ai, Am = ∅ Notemos que ∀m ⩾ n+ 1 ⇒

P

 ∞⋃
i=1

Ai

 =

∞∑
i=1

P (Ai) =

n∑
i=1

P (Ai) +

∞∑
j=n+1

P (Aj) =

n∑
i=1

P (Ai) +

∞∑
j=n+1

P (∅) =

n∑
i=1

P (Ai)

(P3) Note usted que Ω = A+Ac ⇒

P (Ω) = P (A) + P (Ac) ⇒ P (A ∪Ac) = P (A) + P (Ac) = 1 ⇒ P (A) = 1− P (Ac)

(P4) Es fácil ver que B = A ∪ (B \A) y que A ∩ (B \A) = ∅

Se sigue por la Definición 1.4 que

⇒ P (B) = P (A ∪B \A) = P (A) + P (B \A) ⇒ P (B \A) = P (B)− P (A)

Ahora, como P (B \A) = P (B)− P (A) y B \A ∈ F , usando la Definición 1.4

⇒ P (B \A) ⩾ 0 ⇒ P (B) = P (A) + P (B \A)

(P5) Notemos que A ∪B = A ∪B \A y que A ∩ (B \A) = ∅

⇒ P (A ∪B) = P (A) + P (B \A)

Note usted que B \A = B \A ∩B y que (A ∩B) ⩽ 1 ⇒

P (B \A) = P (B)− P (A ∩B) ⇒ P (A ∪B) = P (A) + P (B)− P (A ∩B)

(P6) Por (P5) sabemos lo siguiente

P (A ∪B ∪ C) = P ((A ∪B) ∪ C) = P (A ∪B) + P (C)− P ((A ∪B) ∩ C) ⇒

Se sigue que

P (A) + P (B)− P (A ∩B) + P (C)− P ((A ∪B) ∩ C) =

P (A) + P (B)− P (A ∩B) + P (C)− P ((A ∩ C) ∪ (B ∩ C)) =

P (A) + P (B) + P (C)− P (A ∩B)− P (A ∩ C)− P (B ∩ C) + P (A ∩B ∩ C)
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(P7) Sean {Ai}ni=1 ∈ F cualesquiera n eventos ⇒

P (A1 ∪ ... ∪An) = P

 n⋃
i=1

Ai

 =

n∑
i=1

P (Ai)−
∑
i<j

P (Ai ∩Aj) +
∑

i<j<k

P (Ai ∩Aj ∩Ak) + ...+ (−1)n−1P

 n⋂
i=1

Ai


(P8) Note que A = A ∩ Ω = A ∩ (B ∪Bc) = (A ∩B) ∪ (A ∩Bc), y por (P5) s.t.q.

P (A) = P (A ∩B) + P (A ∩Bc)

(P9) Para n = 1 tenemos que P (A1) ⩽ P (A1).

Se sigue que P (
⋃n

i=1 Ai) ⩽
∑n

i=1 P (Ai).

Por (P5) tenemos que

P

n+1⋃
i=1

Ai

 = P

 n⋃
i=1

Ai

+ P (An+1)− P

 n⋃
i=1

Ai ∩An+1


Como P (

⋃n
i=1 Ai ∩An+1) ⩾ 0 ⇒

P

n+1⋃
i=1

Ai

 ⩽ P

 n⋃
i=1

Ai

+ P (An+1) =

n+1∑
i=1

P (Ai)

∴ el Teorema 1.2 es cierto.

Notación (Función). Una función f es una regla que asigna a cada elemento x ∈ A un único
elemento f(x) ∈ B, lo que denotamos:

f : A → B, x 7→ f(x)

En este caso, A es el dominio, B el codominio, y f(x) la imagen de x bajo f .

Observación. P es una función conjuntista.

Definición 1.5 (Monotonía). Sea {An}n⩾1 ⊆ F .

Decimos que es monótona creciente si A1 ⊆ A2 ⊆ · · · , en cuyo caso

ĺım
n→∞

An =

∞⋃
n=1

An.

Decimos que es monótona decreciente si A1 ⊇ A2 ⊇ · · · , en cuyo caso

ĺım
n→∞

An =

∞⋂
n=1

An.

Teorema 1.3 (Teorema de Continuidad). Sea {An}n⩾1 una sucesión monótona de eventos
de un espacio de probabilidad (Ω,F , P ) ⇒ P (A) = P (ĺımn→∞An) = ĺımn→∞ P (An)
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1.1. ESPACIO DE PROBABILIDAD CAPÍTULO 1. FUNDAMENTOS

Proof. Caso 1:

{An} es una sucesión creciente, es decir, A1 ⊆ A2 ⊆ · · · . Definimos:

A := ĺım
n→∞

An =

∞⋃
n=1

An.

Sea B1 := A1 y para n ⩾ 2, definimos Bn := An \ An−1. Entonces los Bn son eventos
disjuntos dos a dos, y se cumple que:

∞⋃
n=1

An =

∞⊔
n=1

Bn,

donde
⊔

denota unión disjunta.

Por la σ-aditividad de la medida de probabilidad:

P

 ∞⋃
n=1

An

 =

∞∑
n=1

P (Bn).

Además, como An =
⋃n

k=1 Bk, se tiene que:

P (An) =

n∑
k=1

P (Bk),

y por lo tanto:

ĺım
n→∞

P (An) =

∞∑
k=1

P (Bk) = P (A).

Caso 2:

{An} es una sucesión decreciente, es decir, A1 ⊇ A2 ⊇ · · · . Definimos:

A := ĺım
n→∞

An =

∞⋂
n=1

An.

Sea Cn := A1 \ An, que define una sucesión creciente de eventos (ya que An ⊇ An+1 ⇒
Cn ⊆ Cn+1), y:

∞⋃
n=1

Cn = A1 \
∞⋂

n=1

An = A1 \A.

Por el caso creciente, sabemos que:

ĺım
n→∞

P (Cn) = P (A1)− P (A).

Por lo tanto:
P (A) = P (A1)− ĺım

n→∞
P (Cn) = ĺım

n→∞
P (An).

En ambos casos se cumple que:

P

(
ĺım

n→∞
An

)
= ĺım

n→∞
P (An).

∴ el Teorema 1.3 es cierto.
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1.2. ANÁLISIS COMBINATRONICO CAPÍTULO 1. FUNDAMENTOS

1.2. Análisis Combinatronico

Definición 1.6 (Principio fundamental del conteo). Si hay n caminos para llegar de A a B y
m caminos para llegar de B a C ⇒ hay m× n caminos para llegar de A a C.

Definición 1.7 (Ordenación sin repetición). Se desea ordenar sin repetición k elementos to-
mados de una población n. Donde 0 ⩽ k ⩽ n < ∞ y n, k ∈ Z+ ⇒ en total hay

n(n− 1)(n− 1)...(n− k + 1) =
n!

(n− k)!

Definición 1.8 (Ordenación con repetición). Se desea ordenar con repetición k elementos
tomados de una población n. Donde 0 ⩽ k ⩽ n < ∞ ∧ n, k ∈ Z+ ⇒ en total hay

n

1
× n

2
× ...× n

k
= nk

Definición 1.9. Sea n ∈ Z+, y sean n1, n2, ..., nk ∈ Z+, tales que
∑k

i=1 ni = n, entonces
definimos la coeficiente multinomial como(

n

n1, n2, ..., nk

)
=

n!

n1!n2!...nk!

Definición 1.10. Supongamos que se tiene una población con n elementos y tomamos de
ella una muestra de k elementos sin reemplazo (es decir, sin repetición), entonces el número
de combinaciones a través de la cual podemos extraer dicha muestra es igual a

x =
n!

(n− k)!k!
=

(
n

k

)

Teorema 1.4 (Identidad de Vandermonde). Sean m,n, r ∈ N0. Entonces

r∑
k=0

(
m

k

)(
n

r − k

)
=

(
m+ n

r

)

Proof. Consideramos un conjunto de m+ n elementos, donde m son de tipo A y n son de
tipo B. Queremos contar de cuántas maneras podemos escoger r elementos en total.

Por un lado, directamente:

Total de maneras de escoger r elementos =
(
m+ n

r

)

Se puede hacer por casos según cuántos de los r elementos provienen del grupo A: si
tomamos k elementos de A ⇒ tomamos r − k de B. Esto se puede hacer de:(

m

k

)
·
(

n

r − k

)
maneras, y sumando sobre todos los posibles k:

r∑
k=0

(
m

k

)(
n

r − k

)
∴ Teorema 1.4 es cierto.
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1.3. PROBABILIDAD CONDICIONAL CAPÍTULO 1. FUNDAMENTOS

1.3. Probabilidad Condicional

Notación. La probabilidad condicional de A dado B es denotada como P (A|B)

Definición 1.11 (Ley General de la Probabilidad Condicional). Sea (Ω,F , P ) un espacio de
probabilidad y sean A,B ∈ F , donde P (B) > 0 ⇒ P (A|B) se define como

P (A|B) =
P (A ∩B)

P (B)

Definición 1.12 (Ley General de la Independencia). Se dice que dos eventos A,B ∈ F son
independientes si se cumple alguna de las siguientes identidades

(I1) P (A|B) = P (A)

(I2) P (B|A) = P (B)

(I3) P (A ∩B) = P (A)P (B)

Corolario. La probabilidad de intersección de dos eventos dependientes A,B ∈ F es

P (A ∩B) = P (A)P (B|A) = P (B)P (A|B)

Para eventos independientes tenemos que P (A ∩B) = P (A)P (B).

Proof. Se sigue directamente de la Definición 1.11 y 1.12.

Teorema 1.5 (Teorema de Bayes). Sean A,B ∈ F con P (B) ̸= 0. Entonces:

P (A | B) =
P (B | A)P (A)

P (B)

Proof. Por definición de probabilidad condicional:

P (A | B) =
P (A ∩B)

P (B)
y P (B | A) =

P (B ∩A)

P (A)
=

P (A ∩B)

P (A)

Sustituimos el Corolario anterior en la primera ecuación

⇒ P (A | B) =
P (B | A)P (A)

P (B)

∴ Teorema 1.5 es cierto.

Teorema 1.6. Sean {B1, ..., Bn} particiones de Ω disjuntas tales que B1 ∪ ...∪Bn = Ω para
algún n ∈ N y P (Bi) > 0 ∀ i = 1, ..., n ⇒ ∀A ∈ F ⊆ Ω ⇒

P (A) =

n∑
i=1

P (A | Bi)P (Bi)

Proof.

P (A) =

n∑
i=1

P (A | Bi)P (Bi) = P (A ∩B1) + ...+ P (A ∩Bn)

= P ((A ∩B1) ∪ ... ∪ (A ∩Bn)) = P (A ∩ (B1 ∪ ... ∪Bn)) = P (A ∩ Ω) = P (A)

8
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Teorema 1.7 (Teorema General de Bayes). Sean {B1, ..., Bn} particiones de Ω disjuntas tales
que B1∪, ...,∪Bn = Ω para algún n ∈ N y P (Bi) > 0 ∀ i = 1, ..., n ⇒ ∀A ∈ F ⊆ Ω ⇒

P (Bj | A) =
P (A | Bj)P (Bj)
n∑

i=1

P (A | Bi)P (Bi)

Un evento Bj se llama hipótesis, P (Bj) se llama probabilidad a priori, y P (Bj |A) es una
probabilidad a posteriori.

Proof. Por el Teorema 1.6 sabemos que

P (Bj |A) =
P (A ∩Bj)

P (A)
=

P (A|Bj)P (Bj)

P (A)
=

P (A|Bj)P (Bj)∑n
i=1 P (A|Bi)P (Bi)

Observación. El Teorema 1.5 aplica a dos eventos arbitrarios. El Teorema 1.7 requiere una
partición de Ω. El primero es un caso particular del segundo.

Teorema 1.8. Sean A1, A2, ..., An ∈ F tal que P
(⋂n−1

i=1 Ai

)
> 0 ⇒

P

 n⋂
i=1

Ai

 =

n∏
i=1

P

Ai|
i−1⋂
j=1

Aj


Proof. Procederemos por inducción matemática sobre n.

(Base inductiva). Tenemos que:

P (A1 ∩A2) = P (A1) · P (A2 | A1)

que es la definición de probabilidad condicional, siempre que P (A1) > 0. Así, el resultado
se cumple para n = 2.

(Paso inductivo). Supongamos que para cierto k ⩾ 2, se cumple:

P

 k⋂
i=1

Ai

 =

k∏
i=1

P

Ai

∣∣∣∣∣∣
i−1⋂
j=1

Aj


Queremos probar que entonces también se cumple para k + 1, es decir:

P

k+1⋂
i=1

Ai

 =

k+1∏
i=1

P

Ai

∣∣∣∣∣∣
i−1⋂
j=1

Aj


Notamos que:

P

k+1⋂
i=1

Ai

 = P


 k⋂

i=1

Ai

 ∩Ak+1


Usando la definición de probabilidad condicional:

P

k+1⋂
i=1

Ai

 = P

 k⋂
i=1

Ai

 · P

Ak+1

∣∣∣∣∣∣
k⋂

i=1

Ai


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Aplicando la hipótesis inductiva al primer término:

=

 k∏
i=1

P

Ai

∣∣∣∣∣∣
i−1⋂
j=1

Aj


 · P

Ak+1

∣∣∣∣∣∣
k⋂

i=1

Ai


que equivale a:

=

k+1∏
i=1

P

Ai

∣∣∣∣∣∣
i−1⋂
j=1

Aj



Teorema 1.9. Sea (Ω,F , P ) un espacio de probabilidad y sea B ∈ F tal que P (B) > 0. Sea
Q(·) = P (·|B) Entonces Q(·) es una medida de probabilidad donde

(Q1) Q(A) ⩾ 0 ∀A ∈ F

(Q2) Q(Ω) = 1

(Q3) Si {Ai}∞i=1 tal que Ai ∩Aj = ∅ ∀i ̸= j ⇒ Q(
⋃∞

i=1 Ai) =
∑∞

i=1 Q(Ai)

Proof. Veamos que es cierto

(Q1) Q(A) = P (A|B) = P (A∩B)
P (B) ⇒ P (A ∩B) ⩾ 0 y P (B) > 0 ⇒ Q(A) ⩾ 0.

(Q2) Q(Ω) = P (Ω|B) = P (Ω∩B)
P (B) = P (B)

P (B) = 1

(Q3) Note usted que

Q(

∞⋃
i=1

Ai) = P (

∞⋃
i=1

Ai|B) =
P [(
⋃∞

i=1 Ai) ∩B]

P (B)
=

P [
⋃∞

i=1(Ai ∩B)]

P (B)

⇒
∑∞

i=1(Ai ∩B)

P (B)
=

∞∑
i=1

P (Ai ∩B)

P (B)
=

∞∑
i=1

P (Ai|B) =

∞∑
i=1

Q(Ai)

∴ Q es una medida de probabilidad.

Definición 1.13 (Independencia de dos eventos). Sean A,B ∈ F , se dice que A y B son
estrictamente independientes ⇔

P (A|B) = P (A) ⇔ A ⊥ B ⇒ P (A ∩B)

P (B)
= P (A) ∴ A ⊥ B ⇔ P (A ∩B) = P (A)× P (B)

Teorema 1.10. Sean A,B ∈ F tal que A ⊥ B ⇒

(c1) A ⊥ Bc

(c2) Ac ⊥ B

(c3) Ac ⊥ Bc.

Proof. Veamos que es cierto

(c1) Se sigue que

P (A∩Bc) = P (A)−P (A∩B) = P (A)−P (A)P (B) = P (A)[1−P (B)] = P (A)P (Bc)

10



1.3. PROBABILIDAD CONDICIONAL CAPÍTULO 1. FUNDAMENTOS

(c2) De forma análoga a (c1)

(c3) Desarrollando, tenemos que

P (Ac ∩Bc) = P [(A ∪B)c] = 1− P (A ∪B)

= 1− P (A)− P (B) + P (A ∩B)

= 1− P (A)− P (B) + P (A)P (B)

= [1− P (A)][1− P (B)] = P (Ac)P (Bc)

11



Capítulo 2

Variable Aleatoria

Definición 2.1 (Variable Aleatoria). Dado un experimento en un espacio muestral Ω, una
variable aleatoria (VA) X es una función que va de Ω a R, es decir

X : Ω → R

Definición 2.2 (VA Discreta). Decimos que una variable aleatoria X es discreta si hay una
lista finita de valores a1, a2, ...an o una lista infinita numerable a1, a2, ... tales que∑

i

P (X = ai para alguna i = 1, 2, ...) = 1

Definición 2.3 (PMF). La función de masa de probabilidad (PMF) de una VA discreta es
la función pX dada por pX(X) = P (X = x). Formalmente:

p(X = x) = P
({

s ∈ Ω | X(s) = x
})

= P (X−1(x))

Definición 2.4 (CDF). Decimos que la función de distribución acumulada (CDF) de una
VA llamada X cualquiera es la función FX dada por FX(x) = P (X ⩽ x) que cumple

(C1) Si x ⩽ y ⇒ FX(x) ⩽ FX(y)

(C2) ∀ a ⇒ FX(a) = ĺım
x→a+

FX(x), la función es continua por la derecha.

(C3) ĺım
x→−∞

FX(x) = 0 y ĺım
x→∞

FX(x) = 1

Teorema 2.1. Sea X una VA discreta. Su PMF pX cumple las siguientes propiedades:

(P1) ∀ j ∈ 1, ... ⇒ pX(xj) > 0. Las VA X con probabilidad 0 no se enlistan.

(P2)
∞∑
i=1

pX(xi) = 1

Proof. La primera es trivial por (P2) de Definición 1.4. Para la segunda, se tiene que:

∞∑
i=1

P (X = xi) = P

 ∞⋃
i=1

{X = xi}

 = P (X = x1 o X = x2 o ...) = 1

12



CAPÍTULO 2. VARIABLE ALEATORIA

Definición 2.5. Decimos que una VA X es continua si su CDF es diferenciable.

Observación. No todas las variables aleatorias continuas tienen función de densidad de
probabilidad (PDF) en el sentido clásico, ya que la función de distribución acumulada
(CDF) puede no ser diferenciable en todos los puntos.

Definición 2.6 (PDF). Sea FX(x) la CDF de una VA continua X ⇒ denotamos f(x) como

f(x) =
dF (x)

dx
= F ′(x)

y le llamamos a f(x) la PDF de la VA X.

Notación. Por convenencia, usamos fX para referirnos tanto a PMF y PDF.

Corolario. Notemos que podemos escribir a la CDF como

FX(x) =

∫ x

−∞
f(t)dt

Definición 2.7. Si una VA continua X tiene una PDF f(x), y se tiene que a < b, entonces,
la probabilidad de que X caiga en el intervalo [a, b] es

P (a ⩽ x ⩽ b) =

∫ b

a

f(x)dx

Teorema 2.2. Sea X una VA continua. Su PDF fX cumple las siguientes propiedades:

(P1) f(x) ⩾ 0

(P2)
∫∞
−∞ f(x)dx = 1

Proof. Notemos que es análogo a una VA discreta, cambiando la suma por la integral.

Observación. La PMF da probabilidades exactas en puntos porque la variable es discreta.
La PDF no da probabilidades puntuales, sino densidades; la probabilidad se obtiene inte-
grando la PDF en un intervalo. Por eso, la PDF no es una PMF para variables continuas.

Notación. Sea X una variable aleatoria con CDF FX(x) = P (X ⩽ x). La función de
supervivencia SX(x) se define como la probabilidad de que X sea mayor que x, es decir,

SX(x) = P (X > x) = 1− FX(x).

Definición 2.8. La σ-álgebra de Borel en R, denotada B(R), es la σ-álgebra generada por
los intervalos abiertos de R i.e.

B(R) = σ
(
{(a, b) : a, b ∈ R, a < b}

)
donde σ(·) denota la operación de generar la sigma-álgebra más pequeña que contiene a ese
conjunto.

Notación (Espacio Medible). Un espacio medible es un par (Ω,F) donde Ω es un conjunto
y F es una σ-álgebra sobre Ω.

13



CAPÍTULO 2. VARIABLE ALEATORIA

Observación. Todo espacio de probabilidad es un espacio medible.

Definición 2.9 (Función Medible). Sea (Ω,F) un espacio medible y (R,B(R)) el espacio real
con su σ-álgebra de Borel. Una función f : Ω → R se dice medible si

∀B ∈ B(R) ⇒ f−1(B) ∈ F

Es decir, la preimagen de cualquier conjunto de Borel es un evento.

Definición 2.10 (Variable Aleatoria Medible). Sea (Ω,F , P ) un espacio de probabilidad y
(R,B(R)) el espacio real con su sigma-álgebra de Borel. Una función

X : Ω → R

se llama variable aleatoria medible si ∀B ∈ B(R) se cumple que

X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈ F

Es decir, la preimagen de cualquier conjunto de Borel es un evento en Ω.

Definición 2.11 (Vector Aleatorio Discreto). Sea (Ω,F , P ) un espacio de probabilidad. Un
vector aleatorio discreto en Rn es una función medible

X = (X1, X2, . . . , Xn) : Ω → Rn

tal que X toma valores en un subconjunto numerable de Rn y se cumple∑
x∈Rn

P (X = x) = 1

Definición 2.12 (Vector Aleatorio Absolutamente Continuo). Sea X = (X1, X2, . . . , Xn) :
Ω → Rn un vector aleatorio. Decimos que X es absolutamente continuo si existe una
función fX : Rn → R tal que para todo conjunto medible A ⊆ Rn se cumple:

P (X ∈ A) =

∫
A

fX(x) dx

A esta función fX se le llama función de densidad conjunta de X.
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Capítulo 3

Momentos de VA

3.1. E[X] y Var[X]

Definición 3.1 (Valor Esperado). Sea X una VA discreta con PMF fX(x) = P (X = x) y
soporte S ⊆ R tal que S = {x ∈ R | fX(x) > 0}. Supongamos que

∑
x∈S |x|fX(x) < ∞ ⇒

se define la esperanza de la VA X como

E[X] :=
∑
x∈S

xfX(x) ∈ R

En caso de que X sea una VA continua tal que
∫∞
−∞|x|fX(x) dx < ∞ ⇒

E[X] :=

∫ ∞
−∞

xfX(x) dx ∈ R

Observación. Sea 0 < p < 1 ⇒
∞∑
x=0

xpx =

∞∑
x=1

xpx−1p = p

∞∑
x=1

xpx−1 = p

∞∑
x=1

d

dp
px

= p
d

dp

∞∑
x=1

px = p
d

dp

(
p

1− p

)
= p

(1− p)p

(1− p)2
=

p

(1− p)2

Lema 3.1. Sea Y ⩾ 0 una VA no negativa y continua ⇒ E[Y ] =
∫∞
0

(1− FY (y))dy

Proof. Como FY (y) = P (Y ⩽ y) ⇒∫ ∞
0

(1− FY (y))dy =

∫ ∞
0

P (Y > y)dy

=

∫ ∞
0

(∫ ∞
y

fY (t)dt

)
dy =

∫ ∞
0

∫ t

0

(fY (t)dy)dt

=

∫ ∞
0

fY (t)

(∫ t

0

dy

)
dt =

∫ ∞
0

tfY (t)dt = E[Y ]

Observación. Recordemos que FY es la función de distribución, fY su derivada: la densidad.
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3.1. E[X] Y Var[X] CAPÍTULO 3. MOMENTOS DE VA

Teorema 3.1. Sea X una VA continua. Sea g(x) cualquier función no negativa real de X

E[g(x)] =
∫ ∞
−∞

g(x)fX(x)dx

Proof. Por el Lema 3.1, tenemos que

E[g(x)] =
∫ ∞
0

P (g(x) > y)dy =

∫ ∞
0

[∫
{x∈R|g(x)>y}

fX(x)dx

]
dy

Integramos en la región de R2 = {(x, y) | 0 < y < g(x) < ∞}

⇒
∫
{x∈R|g(x)>y}

(∫ g(x)

0

fX(x)dy

)
dx =

∫
{x∈R|g(x)>y}

fX(x)

(∫ g(x)

0

dy

)
dx

=

∫
{x∈R|g(x)>y}

g(x)fX(x)dx

Corolario. En caso de ser una VA discreta tenemos que

E[g(x)] =
∑
X∈S

g(x)fX(x)

Proof. Análogo al Teorema 3.1.

Ejemplo 3.1. Sea X una VA con FDP

fX(x) =
c

x!
x = 0, 1, 2, . . .

Proof. Encontremos E[X]

E[X] =
∞∑
x=0

xfX(x) =
∞∑
x=1

x
e−1

x!

Sea y = x− 1

=

∞∑
x=1

e−1

(x− 1)!
= e−1

∞∑
y=0

1

y!
= e1 · e = e

e
= 1

Sea g(x) = x2.

Ahora calculemos E[X2]

E[X2] =

∞∑
x=0

x2fX(x) =

∞∑
x=1

x2 e
−1

x!

Sea y = x− 1

= e−1
∞∑
x=1

x

(x− 1)!
= e−1

∞∑
y=0

y + 1

y!
= e−1

 ∞∑
y=0

y

y!
+

∞∑
y=0

1

y!


=

e+ e

e
=

2e

e
= 2
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3.1. E[X] Y Var[X] CAPÍTULO 3. MOMENTOS DE VA

Observación. E[X2] ̸= E[X]2

Teorema 3.2 (Propiedades del Valor Esperado). E[·] cumple con lo siguiente

(E1) ∀ λ ∈ R ⇒ E[λ] = λ

(E2) Para cualesquiera dos funciones g1, g2 : R → R y ∀ λ1λ2, λ3 ∈ R ⇒

E[λ1g1 ± λ2g2 + λ3] = λ1E[g1]± λ2E[g2] + λ3

(E3) Sea X una VA no negativa P (X ⩾ 0) = 1 ⇒ E[X] ⩾ 0

(E4) Sean g1, g2 : R → R. Si g1(X) ⩾ g2(X) ⇒

E[g1(X)] ⩾ E[g2(X)]

(E5) Sea X una VA cualquiera con esperanza E[X] ⇒ E[|X|] ⩾
∣∣E[X]

∣∣
(E6) Sea X una VA con FDP fX(x) continua y soporte S = R ⇒

E[X] =

∫ ∞
0

(1− FX(x))dx−
∫ 0

−∞
FX(x)dx

(E7) ∀ ω ∈ Ω ⇒
∣∣X(ω)

∣∣ < M t.q M > 0 ⇒ E[X] ⩽ M < ∞

Proof. Probemos el Teorema 3.2

(E1) E[λ] =
∫∞
−∞ λfX(x) = λ

∫∞
−∞ fX(x) = λ · 1 = λ

(E2) E[λ1g1 ± λ2g2 + λ3] =
∫∞
−∞(λ1g1 ± λ2g2 + λ3)fX(x)dx = λ1E[g1]± λ2E[g2] + λ3

(E3) P (X ⩾ 0) = 1 ⇒ xfX(x) ⩾ 0 ⇒
∫
xfX(x)dx ⩾

∫
0dx ⇒ E[X] ⩾ 0

(E4) Notemos que
g1(X) ⩾ g2(X) ⇒ g1(X)− g2(X) ⩾ 0

Por el inciso (E3) s.t.q.
E[g1(X)− g2(X)] ⩾ 0

Y ahora, por (E2) s.t.q.

E[g1(X)]− E[g2(X)] ⩾ 0 ⇒ E[g1(X)] ⩾ E[g2(X)]

(E5) E[−|X|] ⩽ E[X] ⩽ E[|X|] ⇒ −E[|X|] ⩽ E[X] ⩽ E[|X|] ⇒ E[|X|] ⩾
∣∣E[X]

∣∣
(E6) Notemos que ∫ 0

−∞
xfX(x)dx+

∫ ∞
0

xfX(x)dx

=

∫ ∞
0

(1− FX(x))dx−
∫ 0

−∞
FX(x)dx

∴ es cierto el Teorema 3.2.

Observación. Una VA X no tiene esperanza finita cuando E[X] = ∞
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3.1. E[X] Y Var[X] CAPÍTULO 3. MOMENTOS DE VA

Definición 3.2 (Varianza). Sea X una VA tal que E[X2] < ∞. Definimos la varianza de X,
denotada como Var[X] o σ2, como

Var[X] = σ2 = E[(X − µ)2] donde µ = E[X]

Observación. Esto significa que Var[X] = E[(X − E[X])2]

Notación. Escribimos en el caso discreto y en el caso continuo respectivamente∑
∀X

(X − E[X])2fX(x)

∫ ∞
−∞

(X − E[X])2fX(x)dx

Teorema 3.3 (Propiedades de la Varianza). Sea X una VA con E[X2] < ∞ ⇒ Var[X] cumple
con lo siguiente

(σ2
1) Var[X] = E[X2]− E2[X]

(σ2
2) ∀ λ ∈ R ⇒ Var[λ ·X] = λ2 ·Var[X]

(σ2
3) ∀ λ ∈ R ⇒ Var[X + λ] = Var[X]

(σ2
4) Var[X] ⩾ 0

(σ2
5) ∀ λ ∈ R ⇒ Var[X] = 0 ⇔ X = λ

Proof. Probemos el Teorema 3.3

(σ2
1) Var[X] = E[X − µ]

2
= E

[
X2 − 2µX + µ2

]
= E

[
X2
]
− 2µE[X] + µ2

= E
[
X2
]
− 2µ2 + µ2 = E

[
X2
]
− µ2 = E[X2]− E2[X]

(σ2
2) Var[λ ·X] = E[(λX − E[λX])2] = E[(λX − λE[X])2] = E[λ2(X − E[X])2]

λ2 · E[(X − E[X])2] = λ2 ·Var[X]

(σ2
3) Var[X + λ] = E[(X + λ− E[X + λ])2] = E[(X − E[X])2] = Var[X]

(σ2
4) Trivial por (E3) del Teorema 3.2.

(σ2
5) ⇐= Supongamos que X = λ

Var[λ] = E[(λ− E[λ])2] = E[(λ− λ)2] = E[0] = 0

=⇒ Supongamos que Var[X] = 0

0 = Var[X] =
∑
∀X

(X − E[X])2fX(x) = 0

⇒
∑
∀X

(X − E[X])2 = 0 ⇒ X = E[X]

⇒ ∀ ω ∈ Ω ⇒ X(ω) = E[X] = λ

∴ es cierto el Teorema 3.3.

Definición 3.3 (Desviación Estandar). Se define como la raíz postiva de la Definición 3.2

SD[X] = σ =
√

Var[X]
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3.2. MOMENTOS Y FGM CAPÍTULO 3. MOMENTOS DE VA

3.2. Momentos y FGM

Definición 3.4 (r-ésimo momento). Sea X una VA y r ∈ Z+ tal que E[Xr] < ∞ ⇒ se define
al r-esimo momento de la VA X como E[Xr]

Ejemplo 3.2 (r-ésimo momento alrededor de λ). Sea X una VA tal que E[Xr] < ∞, se define
al r-ésimo momento alrededor de λ como

E[(X − λ)r]

Ejemplo 3.3 (r-ésimo momento central). Del Ejemplo 3.2 cuando tomamos a λ = E[X] s.t.q.

E[(X − E[X])r]

Observación. Notemos que la varianza es el segundo momento central de X.

Notación. Cuando r = 3 llamamos al tercer momento el coeficiente de asimetría α.

α =
E[(X − µ)3]

σ3

Cuando r = 4 llamamos al cuarto momento el coeficiente de kurtosis K.

K =
E[(X − µ)4]

σ4

Definición 3.5 (Función Generadora de Momentos). Sea X una VA con FDP fX(x) y h > 0.
Supongamos que ∀ t ∈ (−h, h) s.t.q. E[etX ] < ∞. Se define a la FGM como

mX(t) := E[etX ]

donde mX(t) es una función de valor real.

Notación. Escribimos a la FGM en el caso discreto y en el caso continuo respectivamente

mX(t) =
∑
x∈X

etxfX(x) mX(t) =

∫ ∞
−∞

etxfX(x) dx

Lema 3.2. Sea X una VA con n-ésimo momento finito.

⇒ E[|Xn|] = n

∫ ∞
0

xn−1(1− FX(x)) + n

∫ ∞
0

|x|n−1FX(−x)

Proof. Notemos que

E[|Xn|] =
∫ ∞
−∞

|x|nfX(x) =

∫ 0

−∞
|x|nfX(x)dx+

∫ ∞
0

|x|nfX(x)dx

Simplificaremos estas dos expresiones para llegar al resultado∫ 0

−∞
|x|nfX(x)dx =

∫ 0

−∞
−xnfX(x)dx

= (−xn)FX(x) |n−∞ +n

∫ 0

−∞
(−x)n−1FX(x)dx = 0 + n

∫ ∞
0

|x|n−1FX(−x)
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Lo cual consiste en la segunda parte de la igualdad.∫ ∞
0

|x|nfX(x)dx =

∫ ∞
0

xnfX(x)dx

= −xn(1− FX(x)) |∞0 +n

∫ ∞
0

xn−1(1− FX(x)) = n

∫ ∞
0

xn−1(1− FX(x))

Lo cual compreba al Lema 3.2

Lema 3.3. Sea h > 0 y X una VA cuya FGM mX(t) existe para t ∈ (−h, h)

⇒ mX(t) = 1 + t

[∫ ∞
0

(1− FX(x))etxdx−
∫ 0

−∞
etxFX(x)dx

]

Proof. Notemos lo siguiente

mX(t) =

∫ ∞
−∞

etxfX(x)dx =

∫ 0

−∞
etxfX(x)dx+

∫ ∞
0

etxfX(x)dx

Simplificamos, primero a la primera porción de la suma.∫ 0

−∞
etxfX(x)dx = etxFX(x) |0−∞ −t

∫ 0

−∞
etxFX = FX(0)− t

∫ 0

−∞
etxFX

Ahora, simplificamos la segunda.∫ ∞
0

etxfX(x)dx = −etx(1− FX(x)) |∞0 +t

∫ ∞
0

etxdx(1− FX(x))

= 1− FX(0) + t

∫ ∞
0

etxdx(1− FX(x))

Ahora combinamos ambos resultados

FX(0)− t

∫ 0

−∞
etxFX + 1− FX(0) + t

∫ ∞
0

etxdx(1− FX(x))

= 1 + t

[∫ ∞
0

(1− FX(x))etxdx−
∫ 0

−∞
etxFX(x)dx

]
∴ el Lema 3.3 es cierto.

Teorema 3.4 (Propiedades de FGM). Sea X una VA ⇒ mX(t) cumple con lo siguiente

(m1) mX(t) =
∑∞

k=0
tkE[Xk]

k!

(m2) mX(0) = 1

(m3) d
dtmX(t) |t=0= E[X]

(m4) dn

dntmX(t) |t=0= E[Xn]

(m5) Sea X una VA con FGM mX(t). Sea Y = ax+ b con a, b ∈ R y a ̸= 0

⇒ mY (t) = ebtmX(at)

(m6) Sean X,Y VAs ⇒ mX(t) = mY (t) ⇔ fX = fY

(m7) Sea h > 0 y X VA con FGM mX(t) < ∞ para −h < t < h ⇒ E[Xn] existe ∀ n ⩾ 1
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Proof. Probemos el Teorema 3.4

(m1) Note que, por Taylor, por teorema de convergencia denominada y por el Teorema 3.1

mX(t) = E[etX ] = E

 ∞∑
k=0

(tk)k

k!

 =

∞∑
k=0

E

[
(tk)k

k!

]

=

∞∑
k=0

tkE[Xk]

k!
= 1 + tE[X] +

t2E[X2]

2
+

t3E[X3]

6
+ . . .

(m2) E[e0x] = E[e0] = E[1] = 1

(m3) Tomemos la primera derivada de la FGM, y por (m1) s.t.q.

m′X(t) =
d

dt

[
1 + tE[X] +

t2

2
E[X2] + . . .

]
= E[X] + tE[X2] +

t2

2
E[X3] + . . .

Evaluando en t = 0

E[X] + 0 · E[X2] +
02

2
E[X3] + . . . = E[X]

(m4) Por inducción para n ≥ 1.

(m5) mY (t) = E[etY ] = E[et(ax+b)] = E[eatx+tb] = E[eatxetb] = etbE[eatx] = ebtmX(at)

(m6) mX(t) = mY (t) ⇔ E[etX ] = E[etY ] ⇔ fX = fY

(m7) Ya que X < |X|, basta probar que E[|X|n] < ∞. Por el Lema 3.2 basta probar:∫ ∞
0

xn−1(1− FX(x))dx < ∞ y
∫ 0

−∞
|x|n−1FX(x)dx < ∞

Primero, notemos que para t ∈ (−h, h)

mX(t) =

∫ ∞
−∞

etxfX(x)dx < ∞ ⇒
∫ ∞
0

etx(1− FX(x))dx < ∞

Tomamos a t ∈ (0, h) ⇒ (tx)n−1

(n−1)! < etx ⇒

xn−1 <
(n− 1)! · etx

tn−1
⇒ xn−1(1− FX(x)) <

(n− 1)! · etx

tn−1
(1− FX(x))

⇒
∫ ∞
0

xn−1(1− FX(x)) <

∫ ∞
0

(n− 1)! · etx

tn−1
(1− FX(x))

Viendo el comienzo de la desigualdad, y por el Lema 3.3, s.t.q.

=
(n− 1)!

tn−1

∫ ∞
0

etx(1− FX(x)) < ∞

Segundo, como lo pasado viene de mX(t) < ∞, notemos que si t ∈ (−h, 0)

t

∫ 0

−∞
etxFX(x)dx < ∞ ⇒ tx > 0
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Ahora, notemos qué

|tx|n−1

(n− 1)!
⩽ e|tx| = etx ⇒ |x|n−1 <

etx(n− 1)!

|t|n−1

Ahora, como anteriormente, aplicamos esta integral.∫ 0

−∞
|x|n−1FX(x)dx <

∫ 0

−∞

(n− 1)! · etx

|t|n−1
FX(x) < ∞

Hemos probado ambas desigualdades ∴ ∀ n ⩾ 1 ⇒ E[|X|n] < ∞

∴ el Teorema 3.4 es cierto.

Definición 3.6 (Función Cumulante). Sea X una VA con FGM mX(t) < ∞ para t ∈ (−h, h).
Se define a la función ΨX(t) como

ΨX(t) := ln[mX(t)]

Teorema 3.5 (Propiedades de Ψ). Sea X una VA con FGM mX(t) < ∞ para t ∈ (−h, h) ⇒
ΨX(t) cumple con lo siguiente

(Ψ1) ΨX(0) = 0

(Ψ2) d
dtΨX(t) |t=0= E[X]

(Ψ3) d2

d2tΨX(t) |t=0= Var[X]

Proof. Probemos el Teorema 3.5

(Ψ1) ΨX(0) = ln[mX(0)] = ln[1] = 0

(Ψ2) d
dtΨX(t) = d

dt ln[mX(t)] =
m′

X(t)
mX(t) |t=0=

E[X]
1 = E[X]

(Ψ3) Notemos, por (Ψ2) que

d2

d2t
ΨX(t) =

d2

d2t
ln[mX(t)] =

m′X(t)

mX(t)
|t=0=

mX(t)m′′X(t)−m′X(t)m′X(t)

(m′X(t))2

= m′′0(t)− (m′X(0))2 = E[X2]− E2[X] = Var[X]

∴ es cierto el Teorema 3.5.

Definición 3.7 (Percentiles). Sean X una VA y 0 < p < 1. Se define el percentil p100%
como πp ∈ R tal que

P (x ⩽ πp) = p y P (x > πp) = 1− p

Definición 3.8 (Mediana). La mediana es el percentil 50% oara X i.e. Me = π0,5

Definición 3.9 (Cuartiles). Aquellos valores que dividen la distribución en cuatro partes.

Observación. Los mediana es el segundo cuartil.
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Definición 3.10 (Moda). Sea X una VA con FDP fX(x). La moda de X es el valor Mo ∈ R
que maximiza a fX(x).

En el caso continuo, es el máximo de fX(x)

En el caso discreto, es Mo = x tal que

f(xj)

f(xj−1)
⩾ 1 y

f(xj)

f(xj+1)
⩽ 1

Observación. En caso en el que Mo es unico, se dice que es una distribución unimodal. Si
tiene dos, es bimodal. Si tiene más, se le llama multimodal.

Definición 3.11 (Covarianza). Sean X y Y dos variables aleatorias con esperanza finita. La
covarianza entre X y Y se define como

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]

Equivalentemente, si E[XY ] existe,

Cov(X,Y ) = E[XY ]− E[X]E[Y ]

Definición 3.12 (Matriz de Covarianza). Sea X = (X1, X2, . . . , Xn) un vector aleatorio con
medias finitas. La matriz de covarianza de X es la matriz simétrica definida por

Σ = Cov(X) =
[
Cov(Xi, Xj)

]n
i,j=1

Es decir, Σ es una matriz n× n donde la entrada (i, j) es la covarianza entre Xi y Xj

Definición 3.13 (Vector Aleatorio Gaussiano). Un vector aleatorio X = (X1, X2, . . . , Xn) en
Rn se dice gaussiano si para todo a ∈ Rn, la combinación lineal Y = a⊤X es una variable
aleatoria normal unidimensional, i.e.

Y ∼ N (µ, σ2).

Equivalentemente, X ∼ N (µ,Σ) con vector de medias µ ∈ Rn y matriz de covarianza
Σ ∈ Rn×n simétrica definida positiva.

Definición 3.14 (Esperanza Condicional). Sea (Ω,F , P ) un espacio de probabilidad, X una
variable aleatoria integrable, y G ⊆ F una sub-σ-álgebra. La esperanza condicional de X
dado G, denotada E[X | G], es cualquier variable aleatoria G-medible que satisface

∀G ∈ G ⇒
∫
G

E[X | G] dP =

∫
G

X dP

Definición 3.15 (Varianza Condicional). Sea (Ω,F , P ) un espacio de probabilidad, X una
variable aleatoria cuadrado integrable, y G ⊆ F una sub-σ-álgebra. La varianza condicional
de X dado G, denotada Var(X | G), es la variable aleatoria G-medible definida por

Var(X | G) = E
[
(X − E[X | G])2 | G

]
Además, cumple

∀G ∈ G ⇒
∫
G

Var(X | G) dP =

∫
G

(X − E[X | G])2 dP
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Capítulo 4

Familias Paramétricas

4.1. Discretas

Definición 4.1 (Distribución Uniforme Discreta). Decimos que una VA X tiene distribución
uniforme discreta en los valores x1, x2, . . . , xn (es decir, toma valores finitos con igual pro-
babilidad)

X ∼ U(x1, x2, . . . , xn)

si y solo si su PMF es la siguiente

f(x) = U(x;x1, . . . , xn) =

{
1
n si x ∈ {x1, . . . , xn}
0 si x /∈ {x1, . . . , xn}

donde x1, . . . , xn ∈ R y xi ̸= xj para i ̸= j

Observación. En algunos casos, los parámetros de U son a, b ∈ R tal que n = b− a+ 1

Teorema 4.1 (PMF de Uniforme Discreta). Sea X ∼ U(x1, . . . , xn) su PMF f(x) cumple

(U1) ∀ x ∈ R ⇒ f(x) ⩾ 0

(U2)
∑

x∈R f(x) = 1

Proof. Veamos que Teorema 4.1 es cierto.

(U1) 1
n ⩾ 0 ⇒ f(x) ⩾ 0

(U2)
∑

x∈{x1,...,xn}
1
n = n

n = 1

∴ Teorema 4.1 es cierto.

Teorema 4.2 (Uniforme Discreta). Sea X ∼ U(x1, . . . , xn) ⇒

(U1) mX(t) = et(1−etn)
n(1−et) FGM

(U2) E[X] = n+1
2 Esperanza

(U3) Var[X] = n2−1
12 Varianza
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Proof. Sean X ∼ U({1, 2, . . . , n}), es decir, P (X = k) = 1
n para k = 1, . . . , n.

(U1) Tomamos la FGM

mX(t) = E[etX ] =

n∑
k=1

1

n
etk =

1

n

n∑
k=1

etk =
1

n
· et · 1− etn

1− et
=

et(1− etn)

n(1− et)

(U2) Para la esperanza s.t.q.

E[X] =

n∑
k=1

1

n
k =

1

n

n∑
k=1

k =
1

n
· n(n+ 1)

2
=

n+ 1

2

(U3) Para la esperanza s.t.q.

E[X2] =
1

n

n∑
k=1

k2 =
1

n
· n(n+ 1)(2n+ 1)

6
=

(n+ 1)(2n+ 1)

6

Var[X] = E[X2]− (E[X])2 =
(n+ 1)(2n+ 1)

6
−
(
n+ 1

2

)2

=
(n+ 1)

6

(
2n+ 1− 3(n+ 1)

2

)
=

n2 − 1

12

∴ Teorema 4.2 es cierto.

Definición 4.2 (Distribución Bernoulli). Decimos que una VA X tiene distribución Bernoulli
con parámetro p (es decir, probabilidad de éxito p)

X ∼ Bern(p)

si y solo si su PMF es la siguiente

f(x) = Bern(x; p) =

{
p si x = 1

q = 1− p si x = 0

donde p ∈ [0, 1] y P (X = 1) = p y P (X = 0) = 1− p

Observación. La distribución Bernoulli modela eventos discontinuos, es decir, con dos po-
sibles resultados: los cuales se denominan éxito o fracaso.

Teorema 4.3 (PMF de Bernoulli). Sea X ∼ Bern(p) su PMF f(x) cumple

(B1) ∀ x ∈ R ⇒ f(x) ⩾ 0

(B2)
∑

x∈R f(x) = 1

Proof. Veamos que Teorema 4.3 es cierto.

(B1) p ∈ [0, 1] ⇒ 1− p ⩾ 0 y también p ⩾ 0 ⇒ f(x) ⩾ 0

(B2)
∑

x∈{0,1} f(x) = (1− p) + p = 1

∴ Teorema 4.3 es cierto.
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Teorema 4.4 (Bernoulli). Sea X ∼ Bern(p) ⇒

(B1) mX(t) = (1− p) + pet FGM

(B2) E[X] = p Esperanza

(B3) Var[X] = p(1− p) Varianza

Proof. Sea X ∼ Bern(p), es decir, P (X = 1) = p y P (X = 0) = 1− p.

(B1) Tomamos la FGM:

mX(t) = E[etX ] = et·0(1− p) + et·1p = (1− p) + pet

(B2) Para la esperanza, notemos que:

E[X] = 0(1− p) + 1 · p = p

(B3) Finalmente, para la varianza:

E[X2] = 02(1− p) + 12 · p = p

Var[X] = E[X2]− (E[X])2 = p− p2 = p(1− p)

∴ Teorema 4.4 es cierto.

Definición 4.3 (Distribución Binomial). Decimos que una VA X tiene distribución binomial
con parámetros n ∈ N y p ∈ [0, 1]

X ∼ Bin(n, p)

si y solo si su PMF es la siguiente

f(k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n

donde n es el número de ensayos y p la probabilidad de éxito en cada ensayo.

Teorema 4.5 (PMF de Binomial). Sea X ∼ Bin(n, p) su PMF f(k) cumple

(B1) ∀ k ∈ N ⇒ f(k) ⩾ 0

(B2)
∑n

k=0 f(k) = 1

Proof. Veamos que Teorema 4.5 es cierto.

(B1)
(
n
k

)
pk(1− p)n−k ⩾ 0 ⇒ f(k) ⩾ 0

(B2)
∑n

k=0

(
n
k

)
pk(1− p)n−k = (p+ 1− p)n = 1n = 1

Esto por el teorema del binomio, que postula

(x+ y)
n
=

n∑
k=0

(
n

k

)
yk · xn−k

∴ Teorema 4.5 es cierto.

Observación. Notemos que si n = 1 ⇒ X ∼ Bern
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Teorema 4.6. Sea X ∼ Bin(n, p) y definamos a q = 1− p ⇒ n−X ∼ Bin(n, q)

Proof. Veamos que n−X tiene la PDF de la binomial. Sea Y = n− x

P (Y = k) = P (X = n− k) =

(
n

n− k

)
pn−k(q)k =

(
n

k

)
qk(p)n−k

Teorema 4.7 (Binomial). Sea X ∼ Bin(n, p) ⇒

(B1) mX(t) = (pet + 1− p)n FGM

(B2) E[X] = np Esperanza

(B3) Var[X] = np(1− p) Varianza

Proof. Sea X ∼ Bin(n, p), es decir, P (X = k) =
(
n
k

)
pk(1− p)n−k para k = 0, . . . , n.

(B1) Tomamos la FGM:

mX(t) = E[etX ] =

n∑
k=0

etk
(
n

k

)
pk(1−p)n−k =

n∑
k=0

(
n

k

)
(pet)k(1−p)n−k = (pet+1−p)n

(B2) Por Teorema 3.4 derivamos mX(t) y evaluamos en t = 0

m′X(t) = n(pet + 1− p)n−1pet

⇒ E[X] = m′X(0) = n(p+ 1− p)n−1p = np

(B3) Derivamos dos veces mX(t) y evaluamos en t = 0 ⇒

m′′X(t) = n(n− 1)(pet + 1− p)n−2(pet)2 + n(pet + 1− p)n−1pet

⇒ m′′X(0) = n(n− 1)p2 + np = np((n− 1)p+ 1)

⇒ Var[X] = m′′X(0)− (m′X(0))2 = np((n− 1)p+ 1)− (np)2 = np(1− p)

∴ Teorema 4.7 es cierto.

Observación. En esta distribución X contabiliza el número de éxitos u ocurrencias que
suceden en n ensayos de Bernoulli independientes.

Definición 4.4 (Distribución Poisson). Decimos que una VA X tiene distribución Poisson
con parámetro λ > 0

X ∼ Pois(λ)

si y solo si su función de masa de probabilidad es la siguiente

P (X = k) = Pois(k;λ) =
λke−λ

k!
, k ∈ N0

donde λ ∈ R+

Observación. Esta distribución es comúnmente utilizada para modelar eventos de extraña
ocurrencia. También se usa en el conteo de eventos en un periodo de tiempo determinado.
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Teorema 4.8 (PMF de Poisson). Sea X ∼ Poisson(λ) su PMF f(k) cumple

(P1) ∀ k ∈ N0 ⇒ f(k) ⩾ 0

(P2)
∑∞

k=0 f(k) = 1

Proof. Veamos que Teorema 4.8 es cierto.

(P1) f(k) = λke−λ

k! ⩾ 0 para todo k ∈ N0 pues λ > 0 y factoriales son positivos.

(P2)
∞∑
k=0

λke−λ

k!
= e−λ

∞∑
k=0

λk

k!
= e−λeλ = 1.

∴ Teorema 4.8 es cierto.

Teorema 4.9 (Poisson). Sea X ∼ Poisson(λ) ⇒

(P1) mX(t) = exp
(
λ(et − 1)

)
FGM

(P2) E[X] = λ Esperanza

(P3) Var[X] = λ Varianza

Proof. Sea X ∼ Poisson(λ), es decir, P (X = k) = λke−λ

k! para k = 0, 1, 2, . . .

(P1) Tomamos la FGM:

mX(t) = E[etX ] =

∞∑
k=0

(λet)ke−λ

k!
= e−λ · eλe

t

= exp
(
λ(et − 1)

)

(P2) Usamos la función cumulante ΨX(t) = lnmX(t) = λ(et − 1) y (Ψ2) del Teorema 3.5

Ψ′X(t) = λet |t=0⇒ Ψ′X(0) = λ = E[X]

(P3) Derivando de nuevo y evaluando en t = 0:

Ψ′′X(t) = λet |t=0⇒ Var[X] = Ψ′′X(0) = λ = Var[X]

∴ Teorema 4.9 es cierto.

Observación. La moda de la Poisson es ⌊λ⌋ si λ /∈ Z+, y tanto λ y λ− 1 si λ ∈ Z+

Definición 4.5 (Distribución Geométrica). Decimos que una VA Y tiene distribución geomé-
trica con parámetro p ∈ (0, 1]

Y ∼ Geo(p)

si y solo si su PMF es la siguiente

P (Y = k) = Gem(k; p) = (1− p)kp, k ∈ N0

donde p ∈ (0, 1] representa la probabilidad de éxito en un solo ensayo, y k ∈ N0 contabiliza
el número de fracasos que se presentan antes del primer éxito en ensayos ∼ Bern(p)
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Teorema 4.10 (PMF de Geométrica). Sea Y ∼ Geom(p) su PMF f(k) cumple

(G1) ∀ k ∈ N0 ⇒ f(k) ⩾ 0

(G2)
∑∞

k=0 f(k) = 1

Proof. Veamos que Teorema 4.10 es cierto.

(G1) f(k) = (1− p)kp ⩾ 0 para todo k ∈ N0 pues p ∈ (0, 1]

(G2)
∞∑
k=0

(1− p)kp = p

∞∑
k=0

(1− p)k = p · 1

1− (1− p)
= p · 1

p
= 1.

Esto por la fórmula de la suma de una serie geométrica.

∴ Teorema 4.10 es cierto.

Teorema 4.11 (Geométrica). Sea Y ∼ Geom(p) ⇒

(G1) mY (t) =
p

1−(1−p)et , para t < − ln(1− p) FGM

(G2) E[Y ] = 1−p
p Esperanza

(G3) Var[Y ] = 1−p
p2 Varianza

Proof. Sea Y ∼ Geom(p), es decir, P (Y = k) = (1− p)kp para k = 0, 1, 2, . . .

(G1) Tomamos la FGM:

mY (t) = E[etY ] =
∞∑
k=0

etk(1− p)kp = p

∞∑
k=0

[
(1− p)et

]k
=

p

1− (1− p)et
, para t < − ln(1− p)

(G2) Usamos la función cumulante ΨY (t) = lnmY (t) = ln p− ln
(
1− (1− p)et

)
y (Ψ2) del

Teorema 3.5
Ψ′Y (t) =

(1− p)et

1− (1− p)et
|t=0=

1− p

p
= E[Y ]

(G3) Derivando de nuevo y evaluando en t = 0:

Ψ′′Y (t) =
(1− p)et[1− (1− p)et] + (1− p)2e2t

[1− (1− p)et]2
⇒ Ψ′′Y (0) =

1− p

p2
= Var[Y ]

∴ Teorema 4.11 es cierto.

Definición 4.6 (Binomial Negativa). Una VA X es binomial negativa con parámetros r ∈ N
y p ∈ (0, 1]

X ∼ NegBin(r, p)

si y solo si su PMF es la siguiente

P (X = k) = NegBin(k; r, p) =

(
k + r − 1

k

)
(1− p)kpr, k ∈ N0

donde X cuenta el número de fracasos antes del r-ésimo éxito en ensayos i.i.d ∼ Bern(p).
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Teorema 4.12 (PMF de Binomial Negativa). Sea X ∼ NegBin(r, p) su PMF f(k) cumple

(B1) ∀ k ∈ N0 ⇒ f(k) ⩾ 0

(B2)
∑∞

k=0 f(k) = 1

Proof. Veamos que Teorema 4.12 es cierto.

(B1) f(k) =
(
k+r−1

k

)
(1− p)kpr ⩾ 0 para todo k ∈ N0, pues r ∈ N y p ∈ (0, 1]

(B2) Para 0 < p < 1

∞∑
k=0

(
k + r − 1

k

)
(1− p)kpr = pr

∞∑
k=0

(
k + r − 1

k

)
(1− p)k

= pr ·
(

1

1− (1− p)

)r

= pr ·
(
1

p

)r

= 1

Esto por la fórmula del desarrollo de la serie binomial negativa.

∴ Teorema 4.12 es cierto.

Teorema 4.13 (Binomial Negativa). Sea X ∼ NegBin(r, p) ⇒

(B1) mX(t) =
(

p
1−(1−p)et

)r
, para t < − ln(1− p) FGM

(B2) E[X] = r(1−p)
p Esperanza

(B3) Var[X] = r(1−p)
p2 Varianza

Proof. Sea X ∼ NegBin(r, p), es decir, P (X = k) =
(
k+r−1

k

)
(1− p)kpr para k = 0, 1, 2, . . .

(B1) Tomamos la FGM:

mX(t) = E[etX ] =

∞∑
k=0

etk
(
k + r − 1

k

)
(1− p)kpr = pr

∞∑
k=0

(
k + r − 1

k

)[
(1− p)et

]k
Y notemos que, para t < − ln(1− p)

=

(
p

1− (1− p)et

)r

,

(B2) Usamos la función cumulante ΨX(t) = lnmX(t) = r ln p− r ln
(
1− (1− p)et

)
y (Ψ2)

del Teorema 3.5

Ψ′X(t) =
r(1− p)et

1− (1− p)et
|t=0=

r(1− p)

p
= E[X]

(B3) Derivando de nuevo y evaluando en t = 0:

Ψ′′X(t) =
r(1− p)et[1− (1− p)et] + r(1− p)2e2t

[1− (1− p)et]2
⇒ Ψ′′X(0) =

r(1− p)

p2
= Var[X]

∴ Teorema 4.13 es cierto.
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Definición 4.7 (Distribución Hipergeométrica). Una VA X es hipergeométrica con paráme-
tros N,K, n ∈ N tales que K ≤ N y n ≤ N

X ∼ HGeom(N,K, n)

si y solo si su PMF es la siguiente

P (X = k) = HGeom(k;N,K, n) =

(
K
k

)(
N−K
n−k

)(
N
n

) , máx(0, n−N +K) ≤ k ≤ mı́n(n,K)

donde X cuenta el número de éxitos en una muestra aleatoria de tamaño n tomada sin
reemplazo de una población de tamaño N con K elementos exitosos.

Teorema 4.14 (PMF de Hipergeométrica). Sea X ∼ HGeom(N,K, n) su PMF f(k) cumple

(H1) ∀ k ∈ [máx(0, n−N +K),mı́n(n,K)] ⇒ f(k) ⩾ 0

(H2)
∑mı́n(n,K)

k=máx(0,n−N+K) f(k) = 1

Proof. Veamos que el Teorema 4.14 es cierto.

(H1) f(k) =
(Kk)(

N−K
n−k )

(Nn)
⩾ 0 pues todos los binomiales son no negativos.

(H2) Notemos que, por el Teorema 1.3

mı́n(n,K)∑
k=máx(0,n−N+K)

(
K
k

)(
N−K
n−k

)(
N
n

) =
1(
N
n

) ∑
k

(
K

k

)(
N −K

n− k

)
= 1

∴ el Teorema 4.14 es cierto.

Teorema 4.15 (Hipergeométrica). Sea X ∼ HGeom(N,K, n) ⇒

(H1) E[X] = nK
M Esperanza

(H2) Var[X] = n · K
M ·

(
1− K

M

)
· M−n
M−1 Varianza

Proof. Sea X ∼ HGeom(N,K, n)

(H1) Sabemos que(
n

k

)
=

n!

k!(n− k)!
=

n

k

(n− 1)!

(k − 1)!(n− 1− (k − 1))!
=

n

k

(
n− 1

k − 1

)
Y como x = 0 no aporta nada, de la Definición 3.1

E[X] =

n∑
x=1

x
(
K
x

)(
M−K
n−x

)(
M
n

) =
nK

M

n∑
x=1

(
K−1
x−1

)(
M−1−(K−1)
n−1−(x−1)

)(
M−1
n−1

)
Y si l = x− 1, del Teorema 4.14 se tiene a la PMF

⇒ E[X] =
nK

M
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(H2) Para la varianza, usamos la Definición 3.2 y que

E[X2] = E[X(X − 1)] + E[X]

Primero calculamos

E[X(X − 1)] =

n∑
x=0

x(x− 1)

(
K
x

)(
M−K
n−x

)(
M
n

)
⇒ E[X(X − 1)] =

n(n− 1)K(K − 1)

M(M − 1)
.

E[X2] = E[X(X − 1)] + E[X] =
n(n− 1)K(K − 1)

M(M − 1)
+

nK

M
.

Var[X] = E[X2]− (E[X])2 = n
K

M

(
1− K

M

)
M − n

M − 1
.

∴ Teorema 4.15 es cierto.

4.2. Continuas

Definición 4.8 (Distribución Uniforme Continua). Decimos que una VA X tiene distribución
uniforme continua en el intervalo [a, b] con a < b

X ∼ U(a, b)

si y solo si su PDF es la siguiente

f(x) = U(x; a, b) =

{
1

b−a , x ∈ [a, b]

0, x /∈ [a, b]

donde a, b ∈ R y a < b

Observación. Esta distribución modela espacios equiprobables que toman valores en un
intervalo de longitud finita de R, digamos en I = (a, b) con −∞ < a < b < ∞

Teorema 4.16 (PDF de Uniforme Continua). Sea X ∼ U(a, b) con a < b, su PDF f(x)
cumple

(U1) ∀ x ∈ R ⇒ f(x) ⩾ 0

(U2)
∫∞
−∞ f(x) dx =

∫ b

a
1

b−a dx = 1

Proof. Veamos que el Teorema 4.16 es cierto.

(U1) f(x) =

{
1

b−a , x ∈ [a, b]

0, x /∈ [a, b]
⩾ 0 pues es constante no negativa o cero.

(U2) Notemos que ∫ ∞
−∞

f(x) dx =

∫ b

a

1

b− a
dx =

b− a

b− a
= 1

∴ el Teorema 4.16 es cierto.
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Definición 4.9 (CDF Uniforme Continua). Sea X ∼ U(a, b) con a < b. La CDF de X es

F (x) = P (X ≤ x) =


0, x < a
x−a
b−a , a ≤ x ≤ b

1, x > b

Teorema 4.17 (Uniforme Continua). Sea X ∼ U(a, b) ⇒

(U1) mX(t) = ebt−aat

t(b−a) t ̸= 0 FGM

(U2) E[Xr] = br+1−ar+1

(r+1)(b−a) r-ésimo momento

(U3) E[X] = a+b
2 Esperanza

(U4) Var[X] = (b−a)2
12 Varianza

Proof. Sea X ∼ U(a, b)

(U1) Sea t ̸= 0. Usamos la definición de función generadora de momentos:

mX(t) = E[etX ] =

∫ b

a

etx · 1

b− a
dx =

1

b− a

∫ b

a

etx dx

=
1

b− a

[
etx

t

]b
a

=
1

t(b− a)
(ebt − eat)

(U2) Sea r ∈ N, usamos la definición de esperanza para funciones continuas:

E[Xr] =

∫ b

a

xr · 1

b− a
dx =

1

b− a

∫ b

a

xr dx =
1

b− a

[
xr+1

r + 1

]b
a

=
br+1 − ar+1

(r + 1)(b− a)

(U3) Para la esperanza, tomamos r = 1 en el resultado anterior:

E[X] =
b2 − a2

2(b− a)
=

(b− a)(b+ a)

2(b− a)
=

a+ b

2

(U4) Para la varianza, usamos que

Var[X] = E[X2]− (E[X])2

Tomamos r = 2:

E[X2] =
b3 − a3

3(b− a)
=

(b− a)(b2 + ab+ a2)

3(b− a)
=

b2 + ab+ a2

3

(E[X])2 =

(
a+ b

2

)2

=
a2 + 2ab+ b2

4

⇒ Var[X] =
b2 + ab+ a2

3
− a2 + 2ab+ b2

4
=

(b− a)2

12

∴ Teorema 4.17 es cierto.
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Definición 4.10 (Distribución Exponencial). Decimos que una VA X tiene distribución ex-
ponencial con parámetro λ > 0

X ∼ exp(λ)

si y solo si su PDF es la siguiente

f(x) = exp(x;λ) =

{
λe−λx, x ⩾ 0

0, x < 0

donde λ ∈ R+

Teorema 4.18 (PDF de Exponencial). Sea X ∼ exp(λ) con λ > 0, su PDF f(x) cumple

(e1) ∀ x ∈ R ⇒ f(x) ⩾ 0

(e2)
∫∞
−∞ f(x) dx =

∫∞
0

λe−λx dx = 1

Proof. Veamos que el Teorema 4.18 es cierto.

(e1) f(x) =

{
λe−λx, x ≥ 0

0, x < 0
⩾ 0 pues λ > 0 y la exponencial es positiva.

(e2) Notemos que∫ ∞
−∞

f(x) dx =

∫ ∞
0

λe−λx dx = λ

∫ ∞
0

e−λx dx = λ

[
− 1

λ
e−λx

]
= λ

[
−0 +

1

λ

]
= 1

∴ el Teorema 4.18 es cierto.

Definición 4.11 (CDF Exponencial). Sea X ∼ exp(λ) con λ > 0. La CDF de X es

F (x) = P (X ≤ x) =

{
1− e−λx, x ⩾ 0

0, x < 0

Teorema 4.19 (Exponencial). Sea X ∼ exp(λ) ⇒

(e1) mX(t) = λ
λ−t , t < λ FGM

(e2) E[X] = 1
λ Esperanza

(e3) Var[X] = 1
λ2 Varianza

Proof. Sea X ∼ exp(λ), es decir, f(x) = λe−λx para x ≥ 0.

(e1) Tomamos la FGM, y para t < λ s.t.q.

mX(t) = E[etX ] =

∫ ∞
0

etxλe−λx dx = λ

∫ ∞
0

e−(λ−t)x dx =
λ

λ− t

(e2) Usamos la función ΨX(t) = lnmX(t) = lnλ− ln(λ− t) y (Ψ2) del Teorema 3.5

Ψ′X(t) =
1

λ− t
|t=0=

1

λ
= E[X]
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(e3) Derivando de nuevo:

Ψ′′X(t) =
1

(λ− t)2
⇒ Ψ′′X(0) =

1

λ2
= Var[X]

∴ Teorema 4.19 es cierto.

Definición 4.12 (Función Gamma). Sea α ∈ R+. Se define a la función Gamma como

Γ(α) =

∫ ∞
0

tα−1e−tdt

Ejemplo 4.1. Γ(1) = 1

Proof.

Γ(1) =

∫ ∞
0

t0e−tdt =

∫ ∞
0

e−tdt =

∫ 0

−∞
etdt = 1

Teorema 4.20. ∀ α ∈ R+ ⇒ Γ(α+ 1) = α · Γ(α)

Proof. Nótese que

Γ(α) + 1 =

∫ ∞
0

tαe−tdt = tαe−t |∞0 +α

∫ ∞
0

tα−1e−tdt = 0 + α · Γ(α)

∴ Γ(α+ 1) = α · Γ(α)

Corolario. ∀ α ∈ Z+ ⇒ Γ(α+ 1) = α!

Proof. Suponemos que se cumple para α = k i.e. Γ(k + 1) = k!

Γ(k + 1 + 1) =

∫ ∞
0

tk+1e−tdt

= tk+1e−t |∞0 +(k + 1)

∫ ∞
0

tke−tdt = (k + 1)Γ(k + 1) = (k + 1)k! = (k + 1)!

∴ Γ(α+ 1) = α!

Teorema 4.21. ∀ α ∈ R+ ⇒ Γ
(
1
2

)
=

√
π

Proof. Sea c = Γ( 12 ) =
∫∞
0

t
1
2−1e−tdt =

∫∞
0

1√
t
e−tdt. Ahora tomamos u2 = t y 2udu = dt

⇒
∫ ∞
0

1

u
e−u

2

2udu ⇒ c = 2

∫ ∞
0

u
e−u

2

u
du = 2

∫ ∞
0

e−u
2

du

Notemos que

c · c = 4

∫ ∞
0

e−u
2

du

∫ ∞
0

e−v
2

dv

Por el Teorema de Fubbini
4

∫ ∞
0

∫ ∞
0

e−(u
2+v2)dudv
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Sea u = r cos θ y v = r sin θ

[J] =

[
∂u
∂r

∂u
∂θ

∂v
∂r

∂v
∂θ

]
=

[
cos θ −r sin θ
sin θ r cos θ

]
= r cos2 θ + r sin2 θ = r

⇒ 4

∫ ∞
0

∫ π
2

0

(e−r
2 sin2 θ−r2 cos2 θ)rdθdr = 4

∫ ∞
0

∫ π
2

0

e−r
2

rdθdr

= 4

∫ ∞
0

re−r
2

(∫ π
2

0

dθ

)
dr = 4

π

2

∫ ∞
0

re−r
2

dr

Sea w = r2 y dw = 2rdr

=
2π

2

∫ ∞
0

e−wdw = π

∫ ∞
0

e−wdw = π ⇒ c2 = π ⇒ c =
√
π

∴ Γ
(
1
2

)
=

√
π

Definición 4.13 (Distribución Gamma). Decimos que una VA X tiene distribución Gamma
con parámetros r > 0 y λ > 0

X ∼ Gamma(r, λ)

si y solo si su PDF es la siguiente

f(x) = Gamma(x; r, λ) =
λr

Γ(r)
xr−1e−λx x > 0

donde r, λ ∈ R+ y Γ(r) es la Definición 4.12.

Teorema 4.22 (PDF de Gamma). Sea X ∼ Gamma(r, λ) con r, λ ∈ R+, su PDF f(x) cumple

(Γ1) ∀ x ∈ R ⇒ f(x) ⩾ 0

(Γ2)
∫∞
−∞ f(x) dx =

∫∞
0

λr

Γ(r)x
r−1e−λx dx = 1

Proof. Veamos que el Teorema 4.22 es cierto.

(Γ1) f(x) =

{
λr

Γ(r)x
r−1e−λx, x > 0

0, x ⩽ 0
⩾ 0

Esto como todos los factores son no negativos para x > 0.

(Γ2) Notemos que∫ ∞
−∞

f(x) dx =

∫ ∞
0

λr

Γ(r)
xr−1e−λx dx =

λr

Γ(r)
·
∫ ∞
0

xr−1e−λx dx.

Sea u = λx y dx = 1
λdu

=
λr

Γ(r)
·
∫ ∞
0

(
u

λ

)r−1

e−u · 1
λ
du =

λr

Γ(r)
· 1

λr

∫ ∞
0

ur−1e−u du = 1.

∴ el Teorema 4.22 es cierto.

Observación. Esta distribución tiene usos importantes en la econometría.
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Definición 4.14 (CDF Gamma). Sea X ∼ Gamma(r, λ) con r > 0 y λ > 0. La CDF de X es

F (x) = P (X ≤ x) =


∫ x

0

λr

Γ(r)
tr−1e−λt dt, x ⩾ 0

0, x < 0

Teorema 4.23 (Gamma). Sea X ∼ Gamma(r, λ) ⇒

(Γ1) mX(t) =
(

λ
λ−t

)r
t < λ FGM

(Γ2) E[Xn] = Γ(r+n)
λnΓ(r) n-ésimo momento

(Γ3) E[X] = r
λ Esperanza

(Γ4) Var[X] = r
λ2 Varianza

Proof. Sea X ∼ Gamma(r, λ)

(Γ1) Sea t < λ. Por definición de función generadora de momentos:

mX(t) = E[etX ] =

∫ ∞
0

etx · λr

Γ(r)
xr−1e−λx dx =

λr

Γ(r)

∫ ∞
0

xr−1e−(λ−t)x dx

=
λr

Γ(r)
· Γ(r)

(λ− t)r
=

(
λ

λ− t

)r

(Γ2) Para n ∈ N usamos la definición de momento:

E[Xn] =

∫ ∞
0

xn · λr

Γ(r)
xr−1e−λx dx =

λr

Γ(r)

∫ ∞
0

xn+r−1e−λx dx

Hacemos el cambio u = λx, du = λdx, x = u/λ:

=
λr

Γ(r)
·
∫ ∞
0

(
u

λ

)n+r−1

e−u · 1
λ
du =

λr

Γ(r)
· 1

λn+r

∫ ∞
0

un+r−1e−u du

=
Γ(n+ r)

λnΓ(r)

(Γ3) Para la esperanza, tomamos n = 1:

E[X] =
Γ(r + 1)

λΓ(r)
=

rΓ(r)

λΓ(r)
=

r

λ

(Γ4) Para la varianza usamos que Var[X] = E[X2]− (E[X])2 y tomamos n = 2:

E[X2] =
Γ(r + 2)

λ2Γ(r)
=

(r + 1)rΓ(r)

λ2Γ(r)
=

r(r + 1)

λ2

(E[X])2 =

(
r

λ

)2

=
r2

λ2

⇒ Var[X] =
r(r + 1)

λ2
− r2

λ2
=

r

λ2

∴ Teorema 4.23 es cierto.
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Observación. Notemos que si r = 1 ⇒ X ∼ Gamma(1, λ) = X ∼ exp(λ)

Ejemplo 4.2 (Erlang). Si X ∼ Gamma(r, λ) con r ∈ Z+ ⇒

X ∼ Erlang(r, λ)

si y solo si su PDF es la siguiente

f(x) = Erlang(x; r, λ) =
λr

(r − 1)!
xr−1e−λx, x ⩾ 0

donde se usa que Γ(r) = (r − 1)! cuando r ∈ Z+.

Ejemplo 4.3 (Distribución Ji-Cuadrada). Si X ∼ Gamma(r, λ) con r = k
2 y λ = 1

2 , para
algún k ∈ Z+ ⇒ X tiene una distribución Ji-Cuadrada con k grados de libertad

X ∼ χ2(k)

si y solo si su PDF es la siguiente

f(x) = χ2(x; k) =
1

2k/2Γ(k/2)
xk/2−1e−x/2, x ⩾ 0

donde k ∈ Z+ representa el número de grados de libertad.

Proof. Sea r = k
2 y λ = 1

2

Heredamos de Teorema 4.22 las pruebas de la PDF y de Teorema 4.23 podemos sacar

(χ1) mX(t) =
(

λ
λ−t

)r
t < λ = 1

2 =
(

1
2

1
2−t

) k
2

= 1
1−2t

k
2 = (1− 2t)−

k
2

(χ2) E[X] = r
λ =

k
2
1
2

= k

(χ3) Var[X] = r
λ2 =

k
2
1
2
2 = 2k

∴ la Ji-Cuadrada es una distribución.

Definición 4.15 (Función Beta). Sean α, β ∈ R+. Se define a la función Beta como

B(α, β) =

∫ 1

0

uα−1(1− u)β−1du

Teorema 4.24. La relación entre la Función Gama y Beta es la siguiente

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)

Proof. Consideramos el cambio de variable en la integral doble de dos funciones Gamma

Γ(α)Γ(β) =

∫ ∞
0

xα−1e−x dx ·
∫ ∞
0

yβ−1e−y dy =

∫∫
R2

+

xα−1yβ−1e−(x+y) dx dy

Sea u = x+ y y t = x
x+y ⇒ x = ut y y = u(1− t)
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El jacobiano de esta transformación es [J ] = u, entonces

Γ(α)Γ(β) =

∫∫
u>0, t∈(0,1)

(ut)α−1(u(1− t))β−1e−uu dt du

=

∫ 1

0

tα−1(1− t)β−1 dt ·
∫ ∞
0

uα+β−1e−u du = B(α, β) · Γ(α+ β)

Luego,

⇒ B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)

∴ el teorema es cierto.

Definición 4.16 (Distribución Beta). Decimos que una VA X tiene distribución Beta con
parámetros α > 0 y β > 0

X ∼ Beta(α, β)

si y solo si su PDF es la siguiente

f(x) = Beta(x;α, β) =
1

B(α, β)
xα−1(1− x)β−1, x ∈ (0, 1)

donde B(α, β) es la Definición 4.15 y α, β ∈ R+

Teorema 4.25 (PDF de Beta). Sea X ∼ Beta(α, β) con α, β ∈ R+, su PDF f(x) cumple

(B1) ∀ x ∈ R ⇒ f(x) ⩾ 0

(B2)
∫∞
−∞ f(x) dx =

∫ 1

0
1

B(α,β)x
α−1(1− x)β−1 dx = 1

Proof. Veamos que el Teorema 4.25 es cierto.

(B1) f(x) =

{
1

B(α,β)x
α−1(1− x)β−1, x ∈ (0, 1)

0, x /∈ (0, 1)
⩾ 0

Esto ya que todos los factores son no negativos para x ∈ (0, 1) y α, β > 0.

(B2) Notemos que∫ ∞
−∞

f(x) dx =

∫ 1

0

1

B(α, β)
xα−1(1− x)β−1 dx =

1

B(α, β)
· B(α, β) = 1.

∴ el Teorema 4.25 es cierto.

Definición 4.17 (CDF Beta). Sea X ∼ Beta(α, β) con α > 0 y β > 0. La CDF de X es

F (x;α, β) =
B(x;α, β)
B(α, β)

= Ix(α, β)

Teorema 4.26 (Beta). Sea X ∼ Beta(α, β) con α, β ∈ R+ ⇒

(B1) E[Xr] = B(α+r,β)
B(α,β) =

∏n−1
r=0

α+r
α+β+r r-ésimo momento

(B2) E[X] = α
α+β Esperanza

(B3) Var[X] = αβ
(α+β)2(α+β+1) Varianza
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Proof. Sea X ∼ Beta(α, β)

(B1) Para r ∈ N, usamos la definición del momento:

E[Xr] =

∫ 1

0

xr x
α−1(1− x)β−1

B(α, β)
dx =

1

B(α, β)

∫ 1

0

xr+α−1(1− x)β−1 dx =
B(α+ r, β)

B(α, β)

(B2) Para la esperanza tomamos r = 1:

E[X] =
B(α+ 1, β)

B(α, β)
=

α

α+ β

(B3) Para la varianza usamos Var[X] = E[X2]− (E[X])2 con r = 2:

E[X2] =
B(α+ 2, β)

B(α, β)
=

α(α+ 1)

(α+ β)(α+ β + 1)

(E[X])2 =

(
α

α+ β

)2

=
α2

(α+ β)2

⇒ Var[X] =
α(α+ 1)

(α+ β)(α+ β + 1)
− α2

(α+ β)2
=

αβ

(α+ β)2(α+ β + 1)

∴ el Teorema 4.26 es cierto.

Definición 4.18 (Distribución Pareto). Decimos que una VA X tiene distribución Pareto con
parámetros α > 0 y θ > 0

X ∼ Pareto(α, θ)

si y solo si su PDF es la siguiente

f(x) = Pareto(x;α, θ) =
αθα

xα+1
· I{x⩾θ}

donde α es el parámetro de forma y θ el parámetro de escala.

Teorema 4.27 (PDF de Pareto). Sea X ∼ Pareto(α, θ) con α, θ ∈ R+, su PDF f(x) cumple

(P1) ∀ x ∈ R ⇒ f(x) ⩾ 0

(P2)
∫∞
−∞ f(x) dx =

∫∞
θ

αθα

xα+1 dx = 1

Proof. Veamos que el Teorema 4.27 es cierto.

(P1) f(x) = αθα

xα+1 · I{x≥θ} ⩾ 0 ya que α, θ > 0 y xα+1 > 0 para x ≥ θ.

(P2) Notemos que ∫ ∞
−∞

f(x) dx =

∫ ∞
θ

αθα

xα+1
dx = αθα

∫ ∞
θ

x−α−1 dx.

Como α > 0, la integral converge:

αθα

[
x−α

−α

]∞
θ

= αθα ·

(
0− θ−α

−α

)
= 1.

∴ el Teorema 4.27 es cierto.
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Definición 4.19 (CDF Pareto). Sea X ∼ Pareto(α, θ) con α > 0 y θ > 0. La CDF de X es

F (x;α, θ) = 1−
(
θ

x

)α

, x ⩾ θ

Teorema 4.28 (Pareto). Sea X ∼ Pareto(α, θ) con α, θ ∈ R+ ⇒

(P1) E[Xr] = αθr

α−r r < α r-ésimo momento

(P2) E[X] = αθ
α−1 α > 1 Esperanza

(P3) Var[X] = αθ2

(α−1)2(α−2) α > 2 Varianza

Proof. Sea X ∼ Pareto(α, θ)

(P1) Para r < α:

E[Xr] =

∫ ∞
θ

xr · αθαx−α−1 dx = αθα
∫ ∞
θ

xr−α−1 dx

= αθα ·

[
xr−α

r − α

]∞
θ

=
αθα

α− r
· θr−α =

αθr

α− r

(P2) Para la esperanza tomamos r = 1, requiere α > 1:

E[X] =
αθ

α− 1

(P3) Para la varianza usamos que Var[X] = E[X2]− (E[X])2 y requiere α > 2:

(E[X])2 =

(
αθ

α− 1

)2

⇒ Var[X] =
αθ2

α− 2
− α2θ2

(α− 1)2
=

αθ2

(α− 1)2(α− 2)

∴ el Teorema 4.28 es cierto.

Definición 4.20 (Distribución Normal). Decimos que una VA X tiene distribución normal
con media µ y varianza σ2 (es decir, de parámetros µ y σ)

X ∼ N (µ, σ2)

si y solo si su PDF es la siguiente

f(x) = N (x;µ, σ2) =
1

σ
√
2π

· exp

[
−1

2

(
x− µ

σ

)2
]

donde µ ∈ R y σ2 > 0

Teorema 4.29 (PDF de Normal). Sea X ∼ N (µ, σ2) con µ ∈ R y σ2 > 0 ⇒

(N1) ∀ x ∈ R ⇒ f(x) ⩾ 0

(N2)
∫∞
−∞ f(x) dx =

∫∞
−∞

1
σ
√
2π

· exp
[
− 1

2

(
x−µ
σ

)2]
dx = 1
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Proof. Veamos que el Teorema 4.29 es cierto.

(N1) Claramente f(x) = 1
σ
√
2π

· exp
[
− 1

2

(
x−µ
σ

)2]
≥ 0 para todo x ∈ R, ya que exp(z) > 0

para todo z real y σ > 0.

(N2) Consideramos el cambio de variable z = x−µ
σ ⇒ dx = σ dz. Entonces∫ ∞

−∞
f(x) dx =

∫ ∞
−∞

1

σ
√
2π

exp

[
−1

2

(
x− µ

σ

)2
]
dx =

∫ ∞
−∞

1√
2π

e−z
2/2 dz

Definimos I :=
∫∞
−∞ e−z

2/2 dz. Entonces

I2 =

(∫ ∞
−∞

e−z
2/2dz

)2

=

∫ ∞
−∞

∫ ∞
−∞

e−(z
2+y2)/2 dz dy =

∫
R2

e−(x
2+y2)/2 dx dy

Ahora usamos coordenadas polares: x = r cos θ, y = r sin θ

⇒ dx dy = r dr dθ y x2 + y2 = r2

I2 =

∫ 2π

0

∫ ∞
0

e−r
2/2r dr dθ

Sea u = r2

2 ⇒ du = r dr, entonces

I2 =

∫ 2π

0

(∫ ∞
0

e−u du

)
dθ =

∫ 2π

0

1 · dθ = 2π

Por tanto, I =
√
2π, así que∫ ∞

−∞

1√
2π

e−z
2/2 dz =

1√
2π

·
√
2π = 1

∴ el Teorema 4.29 es cierto.

Definición 4.21 (CDF Normal). Sea X ∼ N (µ, σ2) con µ ∈ R y σ2 > 0. La CDF de X es

F (x;µ, σ2) = Φ

(
x− µ

σ

)
=

1√
2π

∫ x−µ
σ

−∞
e−t

2/2 dt

Teorema 4.30 (Normal). Sea X ∼ N (µ, σ2) con µ ∈ R y σ2 > 0 ⇒

(N1) mX(t) = E[etX ] = exp
(
µt+ σ2t2

2

)
FGM

(N2) E[X] = µ Esperanza

(N3) Var[X] = σ2 Varianza

Proof. Sea X ∼ N (µ, σ2)

(N1) Calculemos la función generadora de momentos:

mX(t) = E[etX ] =

∫ ∞
−∞

etxfX(x) dx =

∫ ∞
−∞

etx
1

σ
√
2π

exp

(
− (x− µ)2

2σ2

)
dx
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completamos el cuadrado en el exponente,

tx− (x− µ)2

2σ2
= − 1

2σ2

(
(x− µ)2 − 2σ2t(x− µ)

)
+ tµ

= − 1

2σ2

(
x− µ− σ2t

)2
+

σ2t2

2
+ tµ

Notemos que

mX(t) =
etµ+

σ2t2

2

σ
√
2π

∫ ∞
−∞

exp

(
− (x− µ− σ2t)2

2σ2

)
dx

Hacemos el cambio de variable y = x−µ−σ2t
σ , entonces dx = σdy y

mX(t) = eµt+
σ2t2

2 · 1√
2π

∫ ∞
−∞

e−
y2

2 dy = eµt+
σ2t2

2

(N2) Usamos la función cumulante ΨX(t) = lnmX(t) = µt+ σ2t2

2 y (Ψ2) del Teorema 3.5

Ψ′X(t) = µ+ σ2t |t=0= µ = E[X]

(N3) Derivando de nuevo y evaluando en t = 0:

Ψ′′X(t) = σ2 ⇒ Ψ′′X(0) = σ2 = Var[X]

∴ Teorema 4.30 es cierto.

Observación. La normal (µ, σ2) cumple E[X] = Mo = Me

Teorema 4.31. Sea X ∼ N (µ, σ2). Sea a, b ̸= 0 ∈ R. Sea Y = aX + b.

⇒ Y ∼ N (aµ+ b, a2σ2)

Proof. Como mX(t) = eµt+
σ2t2

2 = E[etX ] sustiyamos por Y

mY (t) = E[etY ] = E[et(aX+b)] = etbE[etaX ]

etb
(
eµat+

σ2at2

2

)
= eµat+tb+σ2at2

2 = e(µa+b)t+σ2a2t2

2

∴ Y ∼ N (aµ+ b, a2σ2)

Corolario. Si X ∼ N (µ, σ2) ⇒ Y = X − µ ∼ N (0, σ2)

Teorema 4.32. Sea X ∼ N (µ, σ2) y Y = X − µ

⇒ E[Y r] = E[(X − µ)r] =

{
0 si r es impar
2k!σ2k

k!2k
si r es par

Proof. Caso 1: r es impar

E[Y r] =

∫ ∞
−∞

yr
1√

2π · σ
· exp

[
− y2

2r2

]
dy
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=
1√

2
√
π · σ

ĺım
t→∞

∫ ∞
−∞

yr exp

[
− y2

2r2

]
dy =

1√
2
√
π · σ

ĺım
t→∞

0 = 0

Caso 2: r es par

Recordemos que

mY (t) = 1 + tE[Y ] +
t2

2!
E[Y 2] +

t3

3!
E[Y 3] = . . . =

∞∑
k=0

t2kE[Y 2k]

2k!

Por otro lado si Y ∼ N (0, σ2) ⇒

mY (t) = exp

[
σ2t2

2

]
=

∞∑
k=0

 σ2t2

2

k!

 =

∞∑
k=0

σ2kt2k

k!2k

Estas dos ecuaciones son iguales si los coeficientes de t2k i.e.

E[y2k]
2k!

=
σ2k

k!2k

Despejando a E[Y 2k] s.t.q.

E[Y r] =
2k!σ2k

k!2k

∴ el Teorema 4.32 es cierto.

Corolario. Sea X ∼ N (µ, σ2) ⇒ el coeficiente de asimetría α = 0 y de kurtosis K = 3

Proof. Por el Teorema 4.32, como 3 es impar

α =
E[(X − µ)3]

σ3
=

E[Y 3]

σ3
= 0

Ahora, como 4 es par

K =
E[(X − µ)4]

σ4
=

E[Y 4]

σ4
=

E[Y 2·2]

σ4
=

4!σ4

2!22σ4
=

24

8
= 3

Ejemplo 4.4 (Distribución Normal Estandar). Decimos que una VA X tiene distribución
normal estandarizada si sigue la Definición 4.20 con µ = 0 y σ = 1.

X ∼ N (0, 1)

es decir, su PDF es

φ(x) = N (x; 0, 1) =
1√
2π

· exp

[
−x2

2

]
La CDF se denota como

Φ(x) =

∫ x

−∞
φ(t)dt

Proof. Todas las propiedades de la PDF se heredan del Teorema 4.29.
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Teorema 4.33 (Teorema de la Transformación). Sea X una VA continua con densidad fX(x)
y soporte S. Sea Y = g(X), con g : S → R continua, biyectiva y derivable, con inversa
x = g←(y) tal que d

dy g
←(y) ̸= 0.

⇒ fY (y) =

∣∣∣∣ ddy g←(y)

∣∣∣∣fX(g←(y)) IS∗(y)

donde S∗ = g(S) es el soporte de Y .

Proof. Caso 1:

Supongamos que y = g(x) es monótona creciente. En ese caso

FY (y) = P (Y ⩽ y) = P (g(x) ⩽ y) = P (X ⩽ g←(y)) = FX(g←(y))

Como g es continua, derivable, y biyectiva ⇒

fY (y) =
d

dy
FY (y) =

d

dy
FY (g

←(y)) = fX(g←(y))
d

dy
g←(y)

⇒ fY (y) =

∣∣∣∣ ddy g←(y)

∣∣∣∣fX(g←(y)) IS∗(y)

Caso 2:

Supongamos que y = g(x) es monótona decreciente. En ese caso

FX(y) = P (Y ⩽ y) = P (g(x) ⩽ y) = P (X ⩾ g←(y)) = 1− FX(g←(y))

Esto como g(x) es monótona decreciente. Luego

fY (y) =
d

dy
FY (y) =

d

dy
[1− FX(g←(y))] = −fX(g←(y))

d

dy
g←(y)

⇒ fY (y) =

∣∣∣∣ ddy g←(y)

∣∣∣∣fX(g←(y)) IS∗(y)

∴ el Teorema 4.33 es cierto.

Ejemplo 4.5 (Distribución Log-Normal). Decimos que una VA X tiene distribución Log-
Normal si logX ∼ N (µ, σ2), es decir,

X ∼ logN (µ, σ2)

Entonces, su PDF es

f(x) = logN (x;µ, σ2) =
1

xσ
√
2π

exp

[
− (log x− µ)2

2σ2

]
, x > 0

donde µ ∈ R y σ2 > 0 son los parámetros de la normal subyacente.

Proof. Sea Y = logX ∼ N (µ, σ2)

Usamos el Teorema 4.33 con X = eY ⇒ Y = logX, que es biyectiva, continua y derivable.

⇒ fX(x) =

∣∣∣∣ ddx log x

∣∣∣∣ · fY (log x) = 1

x
· 1

σ
√
2π

exp

[
− (log x− µ)2

2σ2

]

⇒ f(x) =
1

xσ
√
2π

exp

[
− (log x− µ)2

2σ2

]
, x > 0
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Además, del Teorema 4.30 podemos obtener:

(L1) mX(t) = E[etX] = erµ+
σ2r2

2

(L2) E[X] = exp
(
µ+ σ2

2

)
(L3) Var[X] =

(
eσ

2 − 1
)
e2µ+σ2

∴ la Log-Normal es una distribución.
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Capítulo 5

Teoremas de Límite

5.1. De Moivre-Laplace

Notación. Denotamos θ(n) a una función tal que θ(x) → 0 rápidamente cuando n → 0.

Teorema 5.1 (Teorema de De Moivre–Laplace). Sea X ∼ Bin(n, p) con p ̸= 0 o 1

Cuando n → ∞
X ∼ N (µ = np, σ2 = npq)

Es decir, para k en un entorno de np, se puede aproximar(
n

k

)
pkqn−k ≃ 1√

2πnpq
exp

(
− (k − np)2

2npq

)
, p+ q = 1, p, q > 0.

Proof. Notemos que esto es equivalente a demostrar que Z = x−np√
npq ∼ N (0, 1)

Busquemos la FGM de Z

mZ(t) = exp

(
−npt
√
npq

)
·mX

(
t

√
npq

)
= exp

(
−npt
√
npq

)q + p · exp

(
t

√
npq

)n

=

exp

(
−pt
√
npq

)q + p · exp

(
t

√
npq

)


n

=

q · exp

(
−pt
√
npq

)
+ p ·

(
exp

t− pt
√
npq

)n

=

q · exp

(
−pt
√
npq

)
+ p · exp

(
tq

√
npq

)n

Ahora, notemos que eu = 1 + u+ u2

2! +
u3

3!

⇒ exp

(
−pt
√
npq

)
= 1− pt

√
npq

+
p2t2√
2npq

− p3t3√
3npq

+ . . .︸ ︷︷ ︸
θ(n)→0

q · e
−pt√
npq = q − qpt

√
npq

+
qp2t2√
2npq

+ θ(n) y q · e
−pt√
npq = p− qpt

√
npq

+
pq2t2√
2npq

+ θ(n)
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Sumando las dos expresiones s.t.q.

= q︸︷︷︸
1−p

+p− qpt
√
npq

+
qpt

√
npq

+
pt2

2n
+

qt2

2n
+ θ(n)

Sustutuyendo en la FGM de Z

mZ(t) =

[
q · e

−pt√
npq + p · e

tq√
npq

]n
=

[
1 +

t2

2n
+ θ(n)

]n

= ĺım
n→∞

[
1 +

t2

2n
+ θ(n)

]n
= ĺım

n→∞

[
1 +

t2

2n

]n
= e

t2

2

Y recordamos del Ejemplo 4.4 que esto es la FGM ∼ N (0, 1)

Z =
x− np
√
npq

→n→∞ N (0, 1)

∴ X ∼ N (np, npq)

5.2. Desigualdades

Teorema 5.2 (Desigualdad de Markov). Sea X una VA no negativa con media finita y t > 0

⇒ P (X ⩾ t) ⩽
E[X]

t

Proof. Recordemos de la Definición 3.1 que

E[X] =

∫ ∞
−∞

xfX(x)dx

Con t > 0 s.t.q ∫
x⩾t

xfX(x)dx+

∫
x<t

xfX(x)dx ⩾
∫
x⩾t

xfX(x)dx

⇒ xfX(x)︸ ︷︷ ︸
x⩾t

⩾ tfX(x)

⇒
∫
x⩾t

xfX(x)dx ⩾
∫
x⩾t

tfX(x)dx =

∫ ∞
t

tfX(x)dx

⇒ E[X] ⩾ t

∫ ∞
t

fX(x)dx ⇒ E[X] ⩾ tP (X ⩾ t)

∴ P (X ⩾ t) ⩽ E[X]
t

Teorema 5.3 (Desigualdad de Tchebyschev). Sea X una VA con varianza σ2 ∈ R+ y media
µ. Sea t > 0

⇒ P (|X − µ| ⩾)
σ2

t2

Proof. Sea Y = (X − µ)2 ⩾ 0

E[Y ] = E[(X − µ)2] = σ2
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Aplicando Teorema 5.2 con t2 > 0

P (Y ⩾ t2) ⩽
E[Y ]

t2
⇔ P ((X − µ)2 ⩾ t2) ⩽

σ2

t2

P (|X − µ| ⩾)
σ2

t2

∴ es cierto el Teorema 5.3

Corolario. P (|X − µ| ⩽ t) ⩾ 1− σ2

t2

Corolario. P (|X − µ| ⩾ tσ) ⩽ σ2

(tσ)2

Corolario. P (|X − µ| < tσ) ⩾ 1− 1
t2

Observación (Taylor). Si fX(x) es dos veces derivable en c ⇒

fX(x) = f(c) +
f ′(c)(x− c)

1!
+

f ′′(c)(x− c)2

2!
+ . . .

Por el Teorema de Valor Intermedio ∃ 0 < φ < c tal que

f(x) = f(c) + f ′(c)(x− c) +
f ′′(φ)(x− φ)

2

Teorema 5.4 (Desigualdad de Jensen). Sea X una VA conE[X] < ∞ y g : R → R con
E[g(X)] < ∞ ⇒

(J1) Si g(x) es cóncava ⇒ E[g(X)] ⩾ g(E[X])

(J2) Si g(x) es convexa ⇒ E[g(X)] ⩽ g(E[X])

Proof. Aplicando Taylor con g(x) alrededor de µ

g(X) = g(µ) +
g′(ξ)(x− µ)

1!
+

g′′(ξ)(x− µ)2

2!

Tomando E[·] de ambos lados

E[g(X)] = E[g(µ)] + g′(µ)(x− µ)︸ ︷︷ ︸
=0

+
g′′(ξ)

2!
E[(x− ξ)2]

⇒ E[g(X)] = g(E[X]) +
g′′(ξ)

2!
E[(x− ξ)2]

Si g es cóncava g′′(ξ) > 0 ⇒
E[g(X)] ⩾ g(E[X])

Si g es convexa g′′(ξ) > 0 ⇒
E[g(X)] ⩽ g(E[X])

∴ el Teorema 5.6 es cierto.

Corolario. Sea X una VA con media E[X] < ∞ y g(X) = X2

E[X2] ⩾ E[X]2 ⇒ E[X2] ⩾ E2[X] ⩾ 0
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Teorema 5.5 (Desigualdad de Chernoff). Sea X una variable aleatoria y t > 0

∀ a ∈ R ⇒ P (X ⩾ a) ⩽ e−ta E
[
etX
]

Esta cota es válida siempre que E
[
etX
]
< ∞ De manera análoga, si t < 0,

P (X ⩽ a) ⩽ e−ta E
[
etX
]

5.3. LGN y TCL

Definición 5.1 (Convergencia Puntual). Sea un espacio de probabilidad (Ω,F , P ). Diremos
que la sucesión de VA (que son funciones) Xn converge puntualmente a X si

P

(
ĺım
n→∞

Xn = X

)
= 1

Definición 5.2 (Convergencia de Probabilidad). Sea un espacio de probabilidad (Ω,F , P ).
Diremos que la sucesión de VA Xn converge a la VA X si ∀ ε > 0 s.t.q.

ĺım
n→∞

P
(
|Xn −X| > ε

)
= 0

i.e. cuando n → ∞ la probabilidad de que la sucesión de VA Xn este lejos de X es nula.

Notación. Podemos denotar la convergencia en probabilidad como Xn
p→ X

Teorema 5.6 (Ley de Kolmogorov). La media muestral Xn converge puntualmente a la
esperanza, o media poblacional E[Xn] = µ. Recordando que las VA son funciones de Ω → R

Cuando n → ∞
∀s ∈ Ω ⇒ Xn(s) → µ

Es decir
P

(
ĺım

n→∞
Xn = µ

)
= 1

Teorema 5.7 (Ley de Khinchin). Cuando n → ∞

Xn
p→ µ

Es decir, ∀ ε > 0

ĺım
n→∞

P

(∣∣∣Xn − µ
∣∣∣) = 0

Proof. Usamos el Teorema 5.3. Supongamos un ε > 0 fijo pero arbitrario

P

(∣∣∣Xn − µ
∣∣∣ > ε

)
⩽

σ2

n · ε2

Cuando n → ∞ el lado derecho tiende a cero.

Notación. Nos referimos al Teorema 5.6 como la Ley de Grandes Números (LGN) fuerte al
Teorema 5.7 como la LGN débil.
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Teorema 5.8 (Teorema Central del Límite). Sea (Ω,F , P ) un espacio muestral. Suponga-
mos que tenemos X1, X2, ... ∈ F ⊆ Ω variables aleatorias independientes e identicamente
distribuidas con media poblacional µ y varianza σ2, y media muestral Xn

Cuando n → ∞
√
n ·

(
Xn − µ

σ

)
→ N (0, 1)

Observación. Es decir, cuando n se hace muy muy muy pero muy muy grande, al hacer
la estandarización de la distribución de la VA Xn se acerca a una distribución normal
estándar.

Teorema 5.9 (Aprox. de TCL). Para grandes n, la distribución de Xn es aproximadamente

N

(
µ,

σ2

n

)

Lema 5.1 (Lema de Borel-Cantelli). Sea (An)n≥1 una sucesión de eventos en un espacio de
probabilidad (Ω,F , P ).

(B1) Si
∑∞

n=1 P (An) < ∞, entonces

P

(
ĺım sup
n→∞

An

)
= 0

es decir, la probabilidad de que ocurran infinitos An es cero.

(B2) Si los eventos An son independientes y
∑∞

n=1 P (An) = ∞, entonces

P

(
ĺım sup
n→∞

An

)
= 1

es decir, ocurren infinitos An casi seguramente.

Definición 5.3 (Función Característica). Sea X una variable aleatoria con distribución en
Rn. La función característica de X es la función φX : Rn → C definida por

φX(t) = E
[
ei⟨t,X⟩

]
donde ⟨t,X⟩ denota el producto interno usual en Rn e i =

√
−1.

Teorema 5.10 (Teorema de Continuidad de Lévy). Sea (Xn)n≥1 una sucesión de variables
aleatorias con funciones características φXn , y sea X una variable aleatoria con función
característica φX . Entonces,

Xn
d−→ X ⇔ ∀ t ∈ R ⇒ φXn(t) → φX(t)

Es decir, la convergencia en distribución de Xn a X es equivalente a la convergencia puntual
de sus funciones características.
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